Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

隐藏字幕 计算机科学 判别式 卷积神经网络 人工智能 可视化 一般化 班级(哲学) 答疑 背景(考古学) 上下文图像分类 任务(项目管理) 机器学习 模式识别(心理学) 图像(数学) 古生物学 数学分析 经济 管理 生物 数学
作者
Ramprasaath R. Selvaraju,Michael Cogswell,Abhishek Das,Ramakrishna Vedantam,Devi Parikh,Dhruv Batra
出处
期刊:International Conference on Computer Vision 卷期号:: 618-626 被引量:15045
标识
DOI:10.1109/iccv.2017.74
摘要

We propose a technique for producing `visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say logits for `dog' or even a caption), flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad- CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multi-modal inputs (e.g. visual question answering) or reinforcement learning, without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are more faithful to the underlying model, and (d) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show even non-attention based models can localize inputs. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a `stronger' deep network from a `weaker' one even when both make identical predictions. Our code is available at https: //github.com/ramprs/grad-cam/ along with a demo on CloudCV [2] and video at youtu.be/COjUB9Izk6E.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
honghong完成签到 ,获得积分10
刚刚
xyy发布了新的文献求助10
刚刚
xucc完成签到,获得积分10
刚刚
dildil发布了新的文献求助10
刚刚
haohaha发布了新的文献求助10
1秒前
sgjj33应助Arrebol采纳,获得10
1秒前
Lucas应助tdtk采纳,获得10
1秒前
2秒前
易天发布了新的文献求助10
2秒前
2秒前
wanci应助梁正强采纳,获得10
2秒前
二斤瓜子完成签到,获得积分10
2秒前
花开花落完成签到,获得积分10
2秒前
ffw1完成签到,获得积分10
3秒前
Pumpkin应助沿岸有贝壳采纳,获得10
3秒前
ZHOUZHEN完成签到,获得积分10
3秒前
所所应助时尚俊驰采纳,获得10
3秒前
霡霂发布了新的文献求助10
4秒前
义气青亦完成签到,获得积分10
4秒前
wang完成签到,获得积分10
5秒前
大反应釜完成签到,获得积分10
6秒前
飘逸访文发布了新的文献求助10
6秒前
小zz完成签到 ,获得积分10
7秒前
易天完成签到,获得积分10
7秒前
包凡之完成签到,获得积分10
8秒前
赫连立果完成签到,获得积分10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Mt完成签到,获得积分10
9秒前
今后应助科研通管家采纳,获得10
10秒前
yifangz完成签到,获得积分20
10秒前
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
XiangW应助科研通管家采纳,获得20
10秒前
积极的寒凡完成签到,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792760
求助须知:如何正确求助?哪些是违规求助? 3337166
关于积分的说明 10284026
捐赠科研通 3054010
什么是DOI,文献DOI怎么找? 1675751
邀请新用户注册赠送积分活动 803769
科研通“疑难数据库(出版商)”最低求助积分说明 761533