Creation of a high resolution EEG based Brain Computer Interface for classifying motor imagery of daily life activities

作者
Siju G. Chacko,Prashant Tayade,Simran Kaur,Ratna Sharma
标识
DOI:10.1109/iww-bci.2019.8737258
摘要

Application of Brain Computer Interface (BCI) is revolutionizing control of prosthetic or exoskeleton devices directly through human thought. A BCI is expected to classify day-to-day life activities like grabbing and lifting a glass of water. Currently, motor imagery based BCI for two closely separated muscle groups like grabbing and lifting an object has not been studied. Challenge of classifying motor imagery of these activities accurately could be solved by using individual BCI. We proposed to achieve the same by using a neural network (machine learning) classifier on high resolution (129 channel) EEG data evaluated continuously every 80ms after spatial filtering using spherical Laplacian. This study employed a motor imagery based BCI optimized for individual subjects (n=28) using EEG data of actual movement for classifying motor imagery of grab, lift and grab+lift of right forearm. A three layered neural network with two output nodes was created for classifying the motor imagery using power of 8-14 Hz band of 500 ms EEG data. This BCI was able to classify motor imagery with 95.65% accuracy. In continuous evaluation, BCI showed a True Positive Rate of 24.89% and False Positive Rate of 12.93%. The percentage of correctly classified motor imagery in each trial was 84.99%, 72.23%, 17.07% for grab, lift and combined respectively. In conclusion, the current BCI was able to classify the motor imagery of grab, lift and grab+lift successfully based on EEG of movement data without any prior training of motor imagery based on last 500ms of data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要芷卉完成签到,获得积分10
刚刚
隐形曼青应助wly9399375采纳,获得10
1秒前
隐形曼青应助超级的路人采纳,获得10
1秒前
攀攀完成签到,获得积分10
1秒前
1秒前
dudu发布了新的文献求助10
1秒前
研友_LB3vXn完成签到,获得积分10
1秒前
harmy发布了新的文献求助10
1秒前
1秒前
好幸运发布了新的文献求助10
1秒前
2秒前
2秒前
妮儿发布了新的文献求助10
2秒前
key完成签到,获得积分10
3秒前
健忘道罡完成签到 ,获得积分20
3秒前
orixero应助虚心念桃采纳,获得10
4秒前
4秒前
张馨悦完成签到 ,获得积分10
4秒前
5秒前
maiyatang发布了新的文献求助10
5秒前
逆光完成签到,获得积分10
5秒前
浮游应助hzy采纳,获得10
5秒前
moffy发布了新的文献求助30
5秒前
云蓝完成签到 ,获得积分10
5秒前
6秒前
6秒前
杨小坤发布了新的文献求助10
6秒前
6秒前
重要芷卉发布了新的文献求助10
6秒前
沉默凡霜完成签到,获得积分10
6秒前
时间胶囊发布了新的文献求助20
6秒前
甜蜜花发布了新的文献求助10
6秒前
what发布了新的文献求助30
7秒前
7秒前
yhx发布了新的文献求助10
7秒前
慕青应助勤劳的绿竹采纳,获得10
7秒前
8秒前
8秒前
科研通AI6应助活泼小蜜蜂采纳,获得10
8秒前
852应助Rain采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5441179
求助须知:如何正确求助?哪些是违规求助? 4552035
关于积分的说明 14233318
捐赠科研通 4473012
什么是DOI,文献DOI怎么找? 2451153
邀请新用户注册赠送积分活动 1442102
关于科研通互助平台的介绍 1418298