Creation of a high resolution EEG based Brain Computer Interface for classifying motor imagery of daily life activities

作者
Siju G. Chacko,Prashant Tayade,Simran Kaur,Ratna Sharma
标识
DOI:10.1109/iww-bci.2019.8737258
摘要

Application of Brain Computer Interface (BCI) is revolutionizing control of prosthetic or exoskeleton devices directly through human thought. A BCI is expected to classify day-to-day life activities like grabbing and lifting a glass of water. Currently, motor imagery based BCI for two closely separated muscle groups like grabbing and lifting an object has not been studied. Challenge of classifying motor imagery of these activities accurately could be solved by using individual BCI. We proposed to achieve the same by using a neural network (machine learning) classifier on high resolution (129 channel) EEG data evaluated continuously every 80ms after spatial filtering using spherical Laplacian. This study employed a motor imagery based BCI optimized for individual subjects (n=28) using EEG data of actual movement for classifying motor imagery of grab, lift and grab+lift of right forearm. A three layered neural network with two output nodes was created for classifying the motor imagery using power of 8-14 Hz band of 500 ms EEG data. This BCI was able to classify motor imagery with 95.65% accuracy. In continuous evaluation, BCI showed a True Positive Rate of 24.89% and False Positive Rate of 12.93%. The percentage of correctly classified motor imagery in each trial was 84.99%, 72.23%, 17.07% for grab, lift and combined respectively. In conclusion, the current BCI was able to classify the motor imagery of grab, lift and grab+lift successfully based on EEG of movement data without any prior training of motor imagery based on last 500ms of data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴空万里完成签到,获得积分10
刚刚
哈哈哈完成签到 ,获得积分10
刚刚
liu完成签到,获得积分10
刚刚
刚刚
1秒前
lll发布了新的文献求助10
1秒前
隐形曼青应助无语的又夏采纳,获得10
2秒前
2秒前
3秒前
哪吒之魔童闹海完成签到 ,获得积分10
3秒前
6秒前
8秒前
wyp大魔王发布了新的文献求助30
8秒前
壮观的夏云完成签到,获得积分10
9秒前
昏睡的巨人应助slf采纳,获得10
12秒前
CRH发布了新的文献求助10
13秒前
nuonuo完成签到,获得积分20
13秒前
13秒前
童年的秋千完成签到,获得积分10
14秒前
15秒前
15秒前
舒适夏彤完成签到,获得积分20
19秒前
夏尔发布了新的文献求助10
19秒前
dsadas发布了新的文献求助10
19秒前
小广完成签到,获得积分10
21秒前
热情铭完成签到 ,获得积分10
22秒前
22秒前
123完成签到 ,获得积分10
22秒前
zlf完成签到,获得积分10
22秒前
谭谨川完成签到,获得积分10
22秒前
23秒前
舒适夏彤发布了新的文献求助50
24秒前
小张求论文完成签到,获得积分10
24秒前
28秒前
山猫大王完成签到 ,获得积分10
28秒前
张润泽完成签到 ,获得积分10
29秒前
nuonuo发布了新的文献求助10
31秒前
Jinman完成签到,获得积分10
32秒前
orixero应助aabbfz采纳,获得10
33秒前
CRH完成签到,获得积分20
36秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914670
求助须知:如何正确求助?哪些是违规求助? 3460030
关于积分的说明 10909164
捐赠科研通 3186697
什么是DOI,文献DOI怎么找? 1761567
邀请新用户注册赠送积分活动 852183
科研通“疑难数据库(出版商)”最低求助积分说明 793201