材料科学
热电效应
塞贝克系数
热电材料
平面的
兴奋剂
凝聚态物理
晶体缺陷
密度泛函理论
声子
无定形固体
散射
掺杂剂
声子散射
热导率
结晶学
光电子学
物理
光学
热力学
化学
计算机图形学(图像)
复合材料
计算机科学
量子力学
作者
Min Hong,Yuan Wang,Wei‐Di Liu,Syo Matsumura,Hao Wang,Jin Zou,Zhi‐Gang Chen
标识
DOI:10.1002/aenm.201801837
摘要
Abstract The multivalence bands in GeTe provide an additional handle to manipulate the thermoelectric performance. Herein, the density‐functional‐theory calculation indicates that Cd doping enables the convergence of these multivalence bands. Plus, the additional Bi dopant serving as the electron donors optimizes the carrier concentration, leading to an enhanced power‐factor in Ge 1− x − y Cd x Bi y Te. Moreover, comprehensive electron microscopy characterizations demonstrate the array of high‐density planar vacancies in Ge 1− x − y Cd x Bi y Te stemming from the absence of {111} Ge atomic planes, which is driven by the reduced formation energy in the scenario of Cd/Bi codoping. Simulations of phonon transport confirm the significant role of planar vacancies in scattering mid‐frequency phonons. Such high‐density planar vacancies, in tandem with grain boundaries and point defects, lead to a lattice thermal conductivity of 0.4 W m −1 K −1 in Ge 1− x − y Cd x Bi y Te, reaching the amorphous limit. Ultimately, a peak zT of 2.2 is realized, which promotes GeTe into the first echelon of cutting‐edge thermoelectric materials. The strategy of combining band convergence and planar vacancies opens an avenue to develop Pb‐free derivatives with superhigh thermoelectric efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI