Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study

医学 结直肠癌 回顾性队列研究 新辅助治疗 放化疗 内科学 全直肠系膜切除术 放射科 前瞻性队列研究 肿瘤科 阶段(地层学) 活检 病态的 结肠镜检查 磁共振成像 卡培他滨 队列 放射治疗 列线图 完全响应 癌症 化疗 观察研究 一致性
作者
Lili Feng,Zhenyu Liu,Chaofeng Li,Zhenhui Li,Xiaoying Lou,Lizhi Shao,Yunlong Wang,Yan Huang,Haiyang Chen,Xiaolin Pang,Shuai Liu,Fang He,Jian Zheng,Xiaochun Meng,Peiyi Xie,Guanyu Yang,Yi Ding,Mingbiao Wei,Jingping Yun,Mien-Chie Hung,Weihua Zhou,Daniel R Wahl,Ping Lan,Jie Tian,Xiangbo Wan
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (1): e8-e17 被引量:9
标识
DOI:10.1016/s2589-7500(21)00215-6
摘要

Accurate prediction of tumour response to neoadjuvant chemoradiotherapy enables personalised perioperative therapy for locally advanced rectal cancer. We aimed to develop and validate an artificial intelligence radiopathomics integrated model to predict pathological complete response in patients with locally advanced rectal cancer using pretreatment MRI and haematoxylin and eosin (H&E)-stained biopsy slides.In this multicentre observational study, eligible participants who had undergone neoadjuvant chemoradiotherapy followed by radical surgery were recruited, with their pretreatment pelvic MRI (T2-weighted imaging, contrast-enhanced T1-weighted imaging, and diffusion-weighted imaging) and whole slide images of H&E-stained biopsy sections collected for annotation and feature extraction. The RAdioPathomics Integrated preDiction System (RAPIDS) was constructed by machine learning on the basis of three feature sets associated with pathological complete response: radiomics MRI features, pathomics nucleus features, and pathomics microenvironment features from a retrospective training cohort. The accuracy of RAPIDS for the prediction of pathological complete response in locally advanced rectal cancer was verified in two retrospective external validation cohorts and further validated in a multicentre, prospective observational study (ClinicalTrials.gov, NCT04271657). Model performances were evaluated using area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).Between Sept 25, 2009, and Nov 3, 2017, 303 patients were retrospectively recruited in the training cohort, 480 in validation cohort 1, and 150 in validation cohort 2; 100 eligible patients were enrolled in the prospective study between Jan 10 and June 10, 2020. RAPIDS had favourable accuracy for the prediction of pathological complete response in the training cohort (AUC 0·868 [95% CI 0·825-0·912]), and in validation cohort 1 (0·860 [0·828-0·892]) and validation cohort 2 (0·872 [0·810-0·934]). In the prospective validation study, RAPIDS had an AUC of 0·812 (95% CI 0·717-0·907), sensitivity of 0·888 (0·728-0·999), specificity of 0·740 (0·593-0·886), NPV of 0·929 (0·862-0·995), and PPV of 0·512 (0·313-0·710). RAPIDS also significantly outperformed single-modality prediction models (AUC 0·630 [0·507-0·754] for the pathomics microenvironment model, 0·716 [0·580-0·852] for the radiomics MRI model, and 0·733 [0·620-0·845] for the pathomics nucleus model; all p<0·0001).RAPIDS was able to predict pathological complete response to neoadjuvant chemoradiotherapy based on pretreatment radiopathomics images with high accuracy and robustness and could therefore provide a novel tool to assist in individualised management of locally advanced rectal cancer.National Natural Science Foundation of China; Youth Innovation Promotion Association of the Chinese Academy of Sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
涨芝士完成签到 ,获得积分10
5秒前
多情的又夏完成签到 ,获得积分10
8秒前
wang完成签到 ,获得积分10
11秒前
和平完成签到 ,获得积分10
13秒前
lili完成签到,获得积分10
15秒前
火星天完成签到,获得积分10
18秒前
wshwx完成签到,获得积分10
19秒前
智慧金刚完成签到 ,获得积分10
22秒前
24秒前
yogurt完成签到 ,获得积分10
25秒前
xdkz发布了新的文献求助10
25秒前
Tom完成签到,获得积分10
26秒前
葡萄小伊ovo完成签到 ,获得积分10
29秒前
小灰灰完成签到 ,获得积分10
30秒前
缓慢雅青完成签到 ,获得积分10
31秒前
刘一完成签到 ,获得积分10
35秒前
蓝桉完成签到 ,获得积分10
38秒前
John完成签到 ,获得积分10
38秒前
xiaohao完成签到 ,获得积分10
40秒前
不与仙同完成签到 ,获得积分10
41秒前
夜白应助科研通管家采纳,获得20
41秒前
xiaofan应助科研通管家采纳,获得10
41秒前
cdercder应助科研通管家采纳,获得10
41秒前
乐乐应助科研通管家采纳,获得10
41秒前
duanhahaha完成签到,获得积分10
42秒前
呆萌凤完成签到 ,获得积分10
46秒前
电池哥发布了新的文献求助20
50秒前
Eason Liu完成签到,获得积分0
52秒前
活泼的大船完成签到,获得积分10
53秒前
54秒前
Narcissus完成签到,获得积分10
54秒前
十三完成签到 ,获得积分10
57秒前
ira发布了新的文献求助10
59秒前
hbhbj完成签到,获得积分10
1分钟前
香香丿完成签到 ,获得积分10
1分钟前
和谐的映梦完成签到,获得积分10
1分钟前
skepticalsnails完成签到,获得积分0
1分钟前
xiaxia42完成签到 ,获得积分10
1分钟前
wangchong完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777727
求助须知:如何正确求助?哪些是违规求助? 3323199
关于积分的说明 10213095
捐赠科研通 3038520
什么是DOI,文献DOI怎么找? 1667428
邀请新用户注册赠送积分活动 798139
科研通“疑难数据库(出版商)”最低求助积分说明 758275