计算机科学
遗忘
人工智能
帕斯卡(单位)
分割
机器学习
深度学习
可解释性
语义鸿沟
深层神经网络
图像(数学)
图像检索
语言学
哲学
程序设计语言
作者
Guanglei Yang,Enrico Fini,Dan Xu,Paolo Rota,Mingli Ding,Hao Tang,Xavier Alameda-Pineda,Elisa Ricci
标识
DOI:10.1109/tmm.2022.3167555
摘要
Over the past years, semantic segmentation, as many other tasks in computer vision, benefited from the progress in deep neural networks, resulting in significantly improved performance.However, deep architectures trained with gradientbased techniques suffer from catastrophic forgetting, which is the tendency to forget previously learned knowledge while learning new tasks.Aiming at devising strategies to counteract this effect, incremental learning approaches have gained popularity over the past years.However, the first incremental learning methods for semantic segmentation appeared only recently.While effective, these approaches do not account for a crucial aspect in pixel-level dense prediction problems, i.e. the role of attention mechanisms.To fill this gap, in this paper we introduce a novel attentive feature distillation approach to mitigate catastrophic forgetting while accounting for semantic spatial-and channel-level dependencies.Furthermore, we propose a continual attentive fusion structure, which takes advantage of the attention learned from the new and the old tasks while learning features for the new task.Finally, we also introduce a novel strategy to account for the background class in the distillation loss, thus preventing biased predictions.We demonstrate the effectiveness of our approach with an extensive evaluation on Pascal-VOC 2012 and ADE20K, setting a new state of the art.
科研通智能强力驱动
Strongly Powered by AbleSci AI