Lignin-Supported Heterogeneous Photocatalyst for the Direct Generation of H2O2 from Seawater

海水 化学 反应性(心理学) 光催化 催化作用 木质素 水解 化学工程 环境化学 有机化学 医学 海洋学 地质学 工程类 病理 替代医学
作者
Aswin Gopakumar,Peng Ren,Jianhong Chen,Bruno V. M. Rodrigues,H. Y. Vincent Ching,Aleksander Jaworski,Sabine Van Doorslaer,Anna Rokicińska,Piotr Kuśtrowski,Giovanni Barcaro,Susanna Monti,Adam Slabon,Shoubhik Das
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (6): 2603-2613 被引量:78
标识
DOI:10.1021/jacs.1c10786
摘要

The development of smart and sustainable photocatalysts is in high priority for the synthesis of H2O2 because the global demand for H2O2 is sharply rising. Currently, the global market share for H2O2 is around 4 billion US$ and is expected to grow by about 5.2 billion US$ by 2026. Traditional synthesis of H2O2 via the anthraquinone method is associated with the generation of substantial chemical waste as well as the requirement of a high energy input. In this respect, the oxidative transformation of pure water is a sustainable solution to meet the global demand. In fact, several photocatalysts have been developed to achieve this chemistry. However, 97% of the water on our planet is seawater, and it contains 3.0-5.0% of salts. The presence of salts in water deactivates the existing photocatalysts, and therefore, the existing photocatalysts have rarely shown reactivity toward seawater. Considering this, a sustainable heterogeneous photocatalyst, derived from hydrolysis lignin, has been developed, showing an excellent reactivity toward generating H2O2 directly from seawater under air. In fact, in the presence of this catalyst, we have been able to achieve 4085 μM of H2O2. Expediently, the catalyst has shown longer durability and can be recycled more than five times to generate H2O2 from seawater. Finally, full characterizations of this smart photocatalyst and a detailed mechanism have been proposed on the basis of the experimental evidence and multiscale/level calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
御风发布了新的文献求助30
1秒前
2秒前
丘比特应助快乐的晓刚采纳,获得10
4秒前
大清发布了新的文献求助10
4秒前
胡萝卜发布了新的文献求助20
5秒前
5秒前
Elaine2021完成签到 ,获得积分10
5秒前
6秒前
十三发布了新的文献求助10
6秒前
7秒前
呼呼哈哈发布了新的文献求助10
10秒前
冉亦完成签到,获得积分10
10秒前
寻道图强应助Irene采纳,获得20
11秒前
12秒前
12秒前
温婉的蘑菇完成签到,获得积分10
12秒前
大清完成签到,获得积分10
13秒前
漫溢阳光完成签到 ,获得积分0
15秒前
脑洞疼应助东北三省采纳,获得10
15秒前
悦耳的听双完成签到,获得积分20
15秒前
桐桐应助应作如是观采纳,获得10
18秒前
动听锦程发布了新的文献求助10
18秒前
科里斯皮尔应助小兵采纳,获得10
22秒前
23秒前
研友_Zl1ND8完成签到,获得积分10
23秒前
Raine发布了新的文献求助10
25秒前
紫金大萝卜应助十三采纳,获得30
25秒前
东北三省发布了新的文献求助10
27秒前
希望天下0贩的0应助xmy采纳,获得10
28秒前
小二郎应助飞翔的臭猪采纳,获得10
29秒前
钮之桃完成签到,获得积分10
31秒前
36秒前
大个应助芷莯采纳,获得10
36秒前
36秒前
呼呼哈哈发布了新的文献求助10
37秒前
爱笑灭龙完成签到,获得积分10
38秒前
Mike001发布了新的文献求助10
38秒前
38秒前
Mike001发布了新的文献求助10
39秒前
曹欣雨发布了新的文献求助10
40秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2423248
求助须知:如何正确求助?哪些是违规求助? 2111984
关于积分的说明 5348159
捐赠科研通 1839513
什么是DOI,文献DOI怎么找? 915714
版权声明 561258
科研通“疑难数据库(出版商)”最低求助积分说明 489747