Predicting acupuncture efficacy for functional dyspepsia based on routine clinical features: a machine learning study in the framework of predictive, preventive, and personalized medicine

医学 针灸科 临床试验 生活质量(医疗保健) 临床疗效 物理疗法 集合(抽象数据类型) 一般化 随机对照试验 物理医学与康复 替代医学 内科学 病理 计算机科学 护理部 数学分析 数学 程序设计语言
作者
Tao Yin,Hui Zheng,Tingting Ma,Xiaoping Tian,Jing Xu,Ying Li,Lei Lan,Mailan Liu,Ruirui Sun,Yong Tang,Fanrong Liang,Fang Zeng
出处
期刊:The Epma Journal [Springer Nature]
卷期号:13 (1): 137-147 被引量:16
标识
DOI:10.1007/s13167-022-00271-8
摘要

Acupuncture is safe and effective for functional dyspepsia (FD), while its efficacy varies among individuals. Predicting the response of different FD patients to acupuncture treatment in advance and therefore administering the tailored treatment to the individual is consistent with the principle of predictive, preventive, and personalized medicine (PPPM/3PM). In the current study, the individual efficacy prediction models were developed based on the support vector machine (SVM) algorithm and routine clinical features, aiming to predict the efficacy of acupuncture in treating FD and identify the FD patients who were appropriate to acupuncture treatment.A total of 745 FD patients were collected from two clinical trials. All the patients received a 4-week acupuncture treatment. Based on the demographic and baseline clinical features of 80% of patients in trial 1, the SVM models were established to predict the acupuncture response and improvements of symptoms and quality of life (QoL) at the end of treatment. Then, the left 20% of patients in trial 1 and 193 patients in trial 2 were respectively applied to evaluate the internal and external generalizations of these models.These models could predict the efficacy of acupuncture successfully. In the internal test set, models achieved an accuracy of 0.773 in predicting acupuncture response and an R2 of 0.446 and 0.413 in the prediction of QoL and symptoms improvements, respectively. Additionally, these models had well generalization in the independent validation set and could also predict, to a certain extent, the long-term efficacy of acupuncture at the 12-week follow-up. The gender, subtype of disease, and education level were finally identified as the critical predicting features.Based on the SVM algorithm and routine clinical features, this study established the models to predict acupuncture efficacy for FD patients. The prediction models developed accordingly are promising to assist doctors in judging patients' responses to acupuncture in advance, so that they could tailor and adjust acupuncture treatment plans for different patients in a prospective rather than the reactive manner, which could greatly improve the clinical efficacy of acupuncture treatment for FD and save medical expenditures.The online version contains supplementary material available at 10.1007/s13167-022-00271-8.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条的元风完成签到,获得积分10
刚刚
1秒前
努力完成签到,获得积分10
1秒前
Zoki发布了新的文献求助10
2秒前
且慢应助月亮采纳,获得10
3秒前
背影依旧那么帅完成签到,获得积分10
3秒前
3秒前
3秒前
FashionBoy应助乐橙采纳,获得10
3秒前
3秒前
坚强的曼雁完成签到,获得积分10
4秒前
打打应助wuzexin采纳,获得10
4秒前
英姑应助hdnej采纳,获得10
6秒前
霸气的猎豹完成签到,获得积分10
6秒前
无辜澜发布了新的文献求助10
7秒前
摸鱼人完成签到,获得积分10
7秒前
科目三应助l林钟采纳,获得10
9秒前
9秒前
9秒前
10秒前
小马甲应助科研通管家采纳,获得20
10秒前
fei应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
lalala发布了新的文献求助10
10秒前
10秒前
Maestro_S应助科研通管家采纳,获得10
10秒前
Maestro_S应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
Maestro_S应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
小马甲应助菠萝吹雪采纳,获得10
11秒前
11秒前
12秒前
凡人发布了新的文献求助30
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490022
求助须知:如何正确求助?哪些是违规求助? 4588767
关于积分的说明 14421095
捐赠科研通 4520527
什么是DOI,文献DOI怎么找? 2476762
邀请新用户注册赠送积分活动 1462234
关于科研通互助平台的介绍 1435102