Brain gray matter nuclei segmentation on quantitative susceptibility mapping using dual-branch convolutional neural network

定量磁化率图 卷积神经网络 计算机科学 人工智能 分割 模式识别(心理学) 残余物 人工神经网络 磁共振成像 算法 医学 放射科
作者
Chao Chai,Pengchong Qiao,Bin Zhao,Huiying Wang,Guohua Li,Hong Wu,Wen Shen,Chen Cao,Xinchen Ye,Zhiyang Liu,Shuang Xia
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:125: 102255-102255 被引量:5
标识
DOI:10.1016/j.artmed.2022.102255
摘要

Abnormal iron accumulation in the brain subcortical nuclei has been reported to be correlated to various neurodegenerative diseases, which can be measured through the magnetic susceptibility from the quantitative susceptibility mapping (QSM). To quantitatively measure the magnetic susceptibility, the nuclei should be accurately segmented, which is a tedious task for clinicians. In this paper, we proposed a dual-branch residual-structured U-Net (DB-ResUNet) based on 3D convolutional neural network (CNN) to automatically segment such brain gray matter nuclei. Due to memory limit, 3D-CNN-based methods typically adopted image patches, instead of the whole volumetric image, which, however, ignored the spatial contextual information of the neighboring patches, and therefore led to the accuracy loss. To better tradeoff segmentation accuracy and the memory efficiency, the proposed DB-ResUNet incorporated patches with different resolutions. By jointly using QSM and 3D T1 weighted imaging (T1WI) as inputs, the proposed method was able to achieve better segmentation accuracy over its single-branch counterpart, as well as the conventional atlas-based method and the classical 3D CNN structures. The susceptibility values and the volumes were also measured, which indicated that the measurements from the proposed DB-ResUNet was able to present high correlation with values from the manually annotated regions of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LL发布了新的文献求助10
1秒前
花卷发布了新的文献求助10
1秒前
tomorrow发布了新的文献求助10
1秒前
阔达尔芙发布了新的文献求助10
1秒前
科研通AI5应助咕咕采纳,获得10
2秒前
麦兜的小馒头应助zhoushuai采纳,获得10
2秒前
Eva完成签到,获得积分10
2秒前
万能图书馆应助行进者采纳,获得10
2秒前
haoryan发布了新的文献求助10
2秒前
科研通AI5应助冬虫草采纳,获得10
3秒前
今后应助苏尔采纳,获得10
4秒前
YYMM发布了新的文献求助10
4秒前
orixero应助开心夜云采纳,获得10
4秒前
4秒前
丘比特应助乐观的非笑采纳,获得10
6秒前
阔达尔芙完成签到,获得积分10
6秒前
英俊的铭应助sby采纳,获得10
6秒前
LLL发布了新的文献求助10
6秒前
haoryan完成签到,获得积分10
7秒前
rjj001022发布了新的文献求助10
8秒前
9秒前
10秒前
12秒前
兴奋的水杯完成签到 ,获得积分10
12秒前
乐观的非笑完成签到,获得积分10
12秒前
13秒前
DJ发布了新的文献求助10
13秒前
kingwill发布了新的文献求助30
13秒前
14秒前
xj0806发布了新的文献求助10
14秒前
tomorrow完成签到,获得积分10
15秒前
科研畅通侠完成签到,获得积分10
15秒前
行进者发布了新的文献求助10
17秒前
17秒前
17秒前
苏尔发布了新的文献求助10
18秒前
也曦发布了新的文献求助10
18秒前
曾经曼梅完成签到,获得积分10
20秒前
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814887
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399091
捐赠科研通 3076489
什么是DOI,文献DOI怎么找? 1689843
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608