组织蛋白酶
蛋白酵素
医学
组织蛋白酶B
细胞生物学
溶酶体
组织蛋白酶
生物
生物化学
酶
作者
Cong-Lin Liu,Junli Guo,Xian Zhang,Galina K. Sukhova,Peter Libby,Guo‐Ping Shi
标识
DOI:10.1038/s41569-018-0002-3
摘要
Cysteine protease cathepsins have traditionally been considered as lysosome-restricted proteases that mediate proteolysis of unwanted proteins. However, studies from the past decade demonstrate that these proteases are localized not only in acidic compartments (endosomes and lysosomes), where they participate in intracellular protein degradation, but also in the extracellular milieu, plasma membrane, cytosol, nucleus, and nuclear membrane, where they mediate extracellular matrix protein degradation, cell signalling, and protein processing and trafficking through the plasma and nuclear membranes and between intracellular organelles. Studies in experimental disease models and on cathepsin-selective inhibitors, as well as plasma and tissue biomarker data from animal models and humans, have verified the participation of cysteinyl cathepsins in the pathogenesis of many cardiovascular diseases, including atherosclerosis, myocardial infarction, cardiac hypertrophy, cardiomyopathy, abdominal aortic aneurysms, and hypertension. Clinical trials of cathepsin inhibitors in chronic inflammatory diseases suggest the utility of these inhibitors for the treatment of cardiovascular diseases and associated complications. Moreover, development of cell transfer technologies that enable ex vivo cell treatment with cathepsin inhibitors might limit the unwanted systemic effects of cathepsin inhibition and provide new avenues for targeting cysteinyl cathepsins. In this Review, we summarize the available evidence implicating cysteinyl cathepsins in the pathogenesis of cardiovascular diseases, discuss their potential as biomarkers of disease progression, and explore the potential of cathepsin inhibitors for the treatment of cardiovascular diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI