XGBoost-SHAP-based interpretable diagnostic framework for alzheimer’s disease

随机森林 人工智能 阿达布思 机器学习 计算机科学 神经影像学 阿尔茨海默病神经影像学倡议 朴素贝叶斯分类器 特征选择 认知 分类器(UML) 医学 认知障碍 支持向量机 精神科
作者
Fuliang Yi,Hui Yang,Durong Chen,Yao Qin,Hongjuan Han,Jing Cui,Wenlin Bai,Yifei Ma,Rong Zhang,Hongmei Yu
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:23 (1): 137-137 被引量:119
标识
DOI:10.1186/s12911-023-02238-9
摘要

Abstract Background Due to the class imbalance issue faced when Alzheimer’s disease (AD) develops from normal cognition (NC) to mild cognitive impairment (MCI), present clinical practice is met with challenges regarding the auxiliary diagnosis of AD using machine learning (ML). This leads to low diagnosis performance. We aimed to construct an interpretable framework, extreme gradient boosting-Shapley additive explanations (XGBoost-SHAP), to handle the imbalance among different AD progression statuses at the algorithmic level. We also sought to achieve multiclassification of NC, MCI, and AD. Methods We obtained patient data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, including clinical information, neuropsychological test results, neuroimaging-derived biomarkers, and APOE-ε4 gene statuses. First, three feature selection algorithms were applied, and they were then included in the XGBoost algorithm. Due to the imbalance among the three classes, we changed the sample weight distribution to achieve multiclassification of NC, MCI, and AD. Then, the SHAP method was linked to XGBoost to form an interpretable framework. This framework utilized attribution ideas that quantified the impacts of model predictions into numerical values and analysed them based on their directions and sizes. Subsequently, the top 10 features (optimal subset) were used to simplify the clinical decision-making process, and their performance was compared with that of a random forest (RF), Bagging, AdaBoost, and a naive Bayes (NB) classifier. Finally, the National Alzheimer’s Coordinating Center (NACC) dataset was employed to assess the impact path consistency of the features within the optimal subset. Results Compared to the RF, Bagging, AdaBoost, NB and XGBoost (unweighted), the interpretable framework had higher classification performance with accuracy improvements of 0.74%, 0.74%, 1.46%, 13.18%, and 0.83%, respectively. The framework achieved high sensitivity (81.21%/74.85%), specificity (92.18%/89.86%), accuracy (87.57%/80.52%), area under the receiver operating characteristic curve (AUC) (0.91/0.88), positive clinical utility index (0.71/0.56), and negative clinical utility index (0.75/0.68) on the ADNI and NACC datasets, respectively. In the ADNI dataset, the top 10 features were found to have varying associations with the risk of AD onset based on their SHAP values. Specifically, the higher SHAP values of CDRSB , ADAS13 , ADAS11 , ventricle volume , ADASQ4 , and FAQ were associated with higher risks of AD onset. Conversely, the higher SHAP values of LDELTOTAL , mPACCdigit , RAVLT_immediate , and MMSE were associated with lower risks of AD onset. Similar results were found for the NACC dataset. Conclusions The proposed interpretable framework contributes to achieving excellent performance in imbalanced AD multiclassification tasks and provides scientific guidance (optimal subset) for clinical decision-making, thereby facilitating disease management and offering new research ideas for optimizing AD prevention and treatment programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿透发布了新的文献求助10
刚刚
LI完成签到,获得积分20
刚刚
纯牛奶完成签到,获得积分10
刚刚
852应助一区发十篇采纳,获得10
刚刚
非理性人群完成签到 ,获得积分10
1秒前
1秒前
上官若男应助小李采纳,获得10
2秒前
LI发布了新的文献求助10
3秒前
大个应助cheng采纳,获得10
4秒前
4秒前
勤恳寒安完成签到,获得积分20
4秒前
4秒前
我是老大应助正直的沛凝采纳,获得10
5秒前
6秒前
neinei完成签到,获得积分10
6秒前
8秒前
8秒前
正直的彩虹完成签到,获得积分10
8秒前
今后应助Ashley采纳,获得10
9秒前
10秒前
阿透完成签到,获得积分10
10秒前
水泥酱发布了新的文献求助10
10秒前
11秒前
JamesPei应助优秀的佳儿采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
Lin发布了新的文献求助10
12秒前
想发sci、nature吧啦吧啦完成签到,获得积分10
13秒前
13秒前
Stroeve完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
GGbond发布了新的文献求助10
16秒前
GGbond发布了新的文献求助10
16秒前
GGbond发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790