Training reinforcement learning-based controller using performance simulation of the laser remelting process

计算机科学 强化学习 过程(计算) 培训(气象学) 控制器(灌溉) 人工智能 模拟 机器学习 操作系统 农学 物理 生物 气象学
作者
Honghe Wu,Evgueni V. Bordatchev,O. Remus Tutunea‐Fatan
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:232: 1849-1858 被引量:2
标识
DOI:10.1016/j.procs.2024.02.007
摘要

Surface topography modification is a common post-processing step used to enhance surface quality or to add micro/nano surface structures for various functionalities. Laser remelting (LRM) is a new technology aimed to resolve some of the shortcomings of traditional post-processing technologies. In LRM, a high-energy laser beam melts the top surface and offers control of the molten material flow through the control of laser power, scanning speed, melt pool size, and scan trajectory. By controlling the molten material flow, surface polishing by laser remelting (SP-LRM) can be used to produce finishes characterized by areal arithmetical mean height - Sa < 0.1 µm as well as surface microstructures. LRM is faster than traditional methods, creates no harmful byproducts, and allows for polishing high aspect ratio freeform surfaces without harming surrounding areas. The primary limiting factor for wide-rage industrial use of the LRM is represented by thermodynamic process instabilities that are associated with rapid melting and solidification. For instance, deep trenches or grinding marks in the initial surface can cause small deviations of local surface absorptivity to lead to laser melt pool instabilities. The high-speed nature of the LRM process combined with the complex thermodynamic phenomena makes process instabilities difficult to model, detect, predict, and control. This study aimed to use reinforcement learning (RL) in order to build a 'self-learning' controller capable of adapting to any material and control instabilities on-line and in real-time. Along these lines, the study will detail a preliminary application of two RL implementations involving SP-LRM performance simulation to demonstrate the implementation of a double dueling deep Q-network (DDDQN) controller for melt pool temperature distribution control. The results obtained showed that the 3-action implementation achieved 48% less variance and 35% increase in the mean value of the total reward collected compared with the 31-action implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助辛勤小鸽子采纳,获得10
2秒前
维奈克拉应助东方越彬采纳,获得20
2秒前
2秒前
4秒前
可爱的函函应助沈three采纳,获得10
4秒前
5秒前
5秒前
慕青应助一凡采纳,获得10
5秒前
diplomat完成签到,获得积分10
5秒前
6秒前
桐桐应助淡淡的无极采纳,获得10
6秒前
斯文败类应助zz采纳,获得10
7秒前
zxx发布了新的文献求助10
8秒前
aa关闭了aa文献求助
8秒前
动听的青曼完成签到,获得积分10
9秒前
吴未完成签到,获得积分10
9秒前
9秒前
11秒前
秦奥洋完成签到,获得积分10
11秒前
13秒前
13秒前
one发布了新的文献求助10
13秒前
比和vv应助狂野的山菡采纳,获得10
14秒前
Aryatarg发布了新的文献求助10
14秒前
14秒前
上官若男应助知知采纳,获得10
14秒前
14秒前
zxx完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
NCS发布了新的文献求助10
17秒前
科研通AI6应助欢呼的雁菡采纳,获得10
18秒前
亚亚发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
乔钰涵发布了新的文献求助10
20秒前
dacito完成签到,获得积分10
22秒前
22秒前
达雨应助前进的小宅熊采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554235
求助须知:如何正确求助?哪些是违规求助? 4638753
关于积分的说明 14653933
捐赠科研通 4580369
什么是DOI,文献DOI怎么找? 2512341
邀请新用户注册赠送积分活动 1487191
关于科研通互助平台的介绍 1458025