Sequential Classification of Aviation Safety Occurrences with Natural Language Processing

计算机科学 航空 航空安全 叙述的 根本原因 召回 自然语言处理 人工智能 过程(计算) 深度学习 自然语言 航空事故 精确性和召回率 工程类 可靠性工程 语言学 航空航天工程 哲学 操作系统
作者
Aziida Nanyonga,Hassan Wasswa,Uğur Turhan,Оleksandra Molloy,Graham Wild
出处
期刊:AIAA Aviation 2019 Forum 被引量:7
标识
DOI:10.2514/6.2023-4325
摘要

View Video Presentation: https://doi.org/10.2514/6.2023-4325.vid Safety is a critical aspect of the air transport system given even slight operational anomalies can result in serious consequences. To reduce the chances of aviation safety occurrences, accidents and incidents are reported to establish the root cause, and propose safety recommendations etc. However, analysis narratives of the pre-accident events are presented using human understandable, raw, unstructured, text that cannot be understood by a computer system. The ability to classify and categories safety occurrences from their textual narratives would help aviation industry stakeholders make informed safety critical decisions. To classify and categories safety occurrences, we applied natural language processing (NLP) and AI (Artificial Intelligence) models to process text narratives. The aim of the study was to answer the question, "how well can the damage level caused to the aircraft in a safety occurrence be inferred from the text narrative using natural language processing?" The classification performance of various deep learning models including LSTM, BLSTM, GRU, sRNN, and combinations of these models including LSTM+GRU, BLSTM+GRU, sRNN+LSTM, sRNN+BLSTM, sRNN+GRU, sRNN+BLSTM+GRU, and sRNN+LSTM+GRU was evaluated on a set of 27,000 safety occurrence reports from the NTSB. The results of this study indicate that all models investigated performed competitively well recording an accuracy of over 87.9% which is well above the random guess of 25% for a four-class classification problem. Also, the models recorded high performance in terms of precision, recall, and F1 score above 80%, 88%, and 85%, respectively. sRNN slightly outperformed other single models in terms of recall (90%) and accuracy (90%) while LSTM reported slightly better performance in terms of precision (87%). Further, GRU+LSTM and sRNN+BLSTM+GRU recorded the best performance in terms of recall (90%), and accuracy (90%) for joint models. These results suggest that the damage level can be inferred from the raw text narratives using NLP and deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小熊饼干发布了新的文献求助10
6秒前
剑指东方是为谁应助wshwx采纳,获得10
9秒前
加贝完成签到 ,获得积分10
12秒前
19秒前
俊逸沅完成签到,获得积分10
20秒前
凝聚态阿隅完成签到,获得积分10
22秒前
czz完成签到 ,获得积分20
24秒前
zmnzmnzmn应助galioo3000采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
思源应助科研通管家采纳,获得10
26秒前
沉默友菱应助科研通管家采纳,获得10
26秒前
小马甲应助wshwx采纳,获得10
27秒前
zsy完成签到,获得积分10
28秒前
33秒前
共享精神应助123采纳,获得10
34秒前
36秒前
二十八完成签到 ,获得积分10
36秒前
galioo3000完成签到,获得积分10
41秒前
loka完成签到,获得积分10
43秒前
小莹子发布了新的文献求助30
43秒前
北北完成签到 ,获得积分10
44秒前
44秒前
46秒前
48秒前
49秒前
笑嘻嘻完成签到 ,获得积分10
50秒前
50秒前
次我完成签到,获得积分10
51秒前
51秒前
53秒前
Lucas应助小莹子采纳,获得100
55秒前
惠子发布了新的文献求助10
55秒前
123好发布了新的文献求助10
57秒前
59秒前
大个应助fofo采纳,获得10
59秒前
Eric发布了新的文献求助30
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776410
求助须知:如何正确求助?哪些是违规求助? 3321842
关于积分的说明 10208028
捐赠科研通 3037175
什么是DOI,文献DOI怎么找? 1666562
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872