Probabilistic machine learning approach to reliability analysis of a bogie frame under dynamic loading

转向架 计算机科学 可靠性(半导体) 帧(网络) 概率逻辑 机器学习 人工智能 工程类 结构工程 可靠性工程 电信 功率(物理) 物理 量子力学
作者
Seyed Ahmad Sanikhani,Mehdi Soroush,Kourosh Alizadeh Kiani,Mohammad Ravandi,Mohsen Rezaeian Akbarzadeh
出处
期刊:International journal of rail transportation [Taylor & Francis]
卷期号:12 (5): 958-978 被引量:1
标识
DOI:10.1080/23248378.2023.2274369
摘要

This study aims to evaluate the fatigue failure probability of a bogie frame considering the variability of input parameters, including loading (L), endurance limit (Se), and fillet size (r), through a data-driven surrogate model. Mechanical tests were conducted to determine the mechanical properties of the material of the bogie frame while a combination of machine learning and FEA has been utilized to generate a dataset for the dynamic response of the bogie frame under main in-service fatigue loads. Nine machine learning-based surrogate models were constructed based on the actual response at a limited set of data points chosen by the Optimum space-filling algorithm, and their accuracy was investigated. It is found that the CatBoost model is the optimal algorithm to map the stochastic input parameters with the factor of safety as the output parameter and perform the reliability evaluation. Also, results reveal a fatigue reliability of 99.34% for the bogie frame under normal conditions, with a cumulative failure probability of less than 0.66% over a 30-year service life. Furthermore, the results show that the proposed machine learning-based approach is an efficient tool to evaluate the fatigue failure probability of the bogie frame with reasonable accuracy when a small set of training data is available. This study's scope extends to providing comprehensive guidelines for employing machine learning methods for fatigue reliability analysis of complex vehicle structures in the presence of various stochastic variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温1010_完成签到 ,获得积分10
刚刚
Wellnemo完成签到,获得积分10
1秒前
rendong4009发布了新的文献求助10
1秒前
1秒前
给你发布了新的文献求助30
1秒前
1秒前
2秒前
zhao完成签到,获得积分10
2秒前
小屋完成签到,获得积分10
2秒前
3秒前
3秒前
Loki完成签到 ,获得积分20
3秒前
Yvonne完成签到,获得积分10
3秒前
3秒前
无情无心完成签到,获得积分10
3秒前
橙子发布了新的文献求助10
3秒前
Cynn完成签到 ,获得积分10
3秒前
3秒前
4秒前
虎虎生威完成签到,获得积分20
4秒前
把妹王完成签到,获得积分10
4秒前
内向半鬼完成签到,获得积分10
4秒前
Ado发布了新的文献求助10
5秒前
Dasph7发布了新的文献求助20
5秒前
5秒前
cleo完成签到,获得积分20
5秒前
5秒前
5秒前
FAST发布了新的文献求助10
6秒前
6秒前
搜集达人应助windcreator采纳,获得10
6秒前
诗谙完成签到,获得积分10
6秒前
大个应助zhangzhangZZZ采纳,获得10
6秒前
wulukukulll发布了新的文献求助10
7秒前
Cluneeeee发布了新的文献求助10
7秒前
Nangong完成签到,获得积分10
7秒前
9秒前
艺术治疗发布了新的文献求助10
9秒前
情怀应助shareyoung采纳,获得10
9秒前
健忘的曼雁完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262045
求助须知:如何正确求助?哪些是违规求助? 4423178
关于积分的说明 13768730
捐赠科研通 4297627
什么是DOI,文献DOI怎么找? 2358073
邀请新用户注册赠送积分活动 1354468
关于科研通互助平台的介绍 1315580