Postsynthetic Modification of Metal–Organic Layers

金属 化学 纳米技术 材料科学 有机化学
作者
Zhiye Wang,Lingyun Cao,Huihui Hu,Cheng Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00726
摘要

ConspectusMetal-organic layers (MOLs), as a subclass of two-dimensional (2D) metal-organic frameworks (MOFs), have gained prominence in materials science by combining the structural versatility of MOFs with the unique physical and chemical properties of 2D materials. MOLs consist of metal oxide clusters connected by organic ligands, forming periodically extended 2D architectures with tunable properties and large surface areas. These characteristics endow MOLs with significant potential for applications in catalysis, sensing, energy storage, and biomedicine.The synthesis of MOLs predominantly follows two key pathways: top-down exfoliation of bulk layered MOFs and bottom-up assembly from molecular building units. The exfoliation method allows for the isolation of ultrathin MOL sheets from bulk precursors, but scalability and structural defects present ongoing challenges. In contrast, the bottom-up assembly offers more precise control over structural design, enabling the formation of MOLs with tailored chemical functionalities and morphologies. By carefully selecting linkers and synthetic conditions, researchers have successfully constructed MOLs with diverse geometric configurations including linear, triangular, and rectangular ligand motifs. Nevertheless, achieving consistent monolayer formation and controlling lateral dimensions remain critical challenges for the widespread application of these materials.A defining advantage of MOLs is their exceptional amenability to postsynthetic modification (PSM). PSM strategies enable fine-tuning of MOL properties and the introduction of novel functionalities without compromising the integrity of the underlying framework. Four principal approaches to PSM have been established: (1) linker modification, where additional coordination sites facilitate selective metalation or functional group incorporation; (2) secondary building unit (SBU) modification, using replaceable sites perpendicular to the MOL plane for targeted functionalization; (3) dual modification, integrating linker and SBU functionalization to achieve complex multifunctional platforms; and (4) multilevel assembly, incorporating MOLs into larger hierarchical architectures such as biomimetic systems and composite materials.These versatile modification strategies have unlocked novel applications of MOLs, including single-site catalysis, photocatalysis, and artificial photosynthetic systems. For instance, MOLs functionalized with transition metal complexes have more accessible reactive sites than conventional MOFs for faster substrate transport. Additionally, MOLs interfaced with biomimetic systems, such as liposomes and proteins, have demonstrated significant promise in photochemical energy conversion and selective oxidation processes.Despite these advancements, several key obstacles persist. Achieving uniform monolayer thickness while preventing multilayer aggregation remains a formidable task, necessitating deeper insights into the thermodynamic and kinetic factors governing MOL growth. Furthermore, the behavior of MOLs during drying, adsorption, and structural modification often deviates from classical models, suggesting the involvement of complex interfacial phenomena that warrant further investigation. Addressing these challenges will be crucial for harnessing the full potential of MOLs in next-generation functional materials.In summary, MOLs represent a versatile and dynamic class of materials that offer opportunities for innovation across diverse scientific disciplines. By advancing synthetic methodologies and deepening our understanding of postsynthetic modification strategies, researchers can continue to expand the functional landscape of MOLs, paving the way for transformative applications in catalysis, energy conversion, and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡奇Mikey完成签到,获得积分10
刚刚
碧蓝觅山发布了新的文献求助10
刚刚
单薄广山发布了新的文献求助10
1秒前
1秒前
自由小萱完成签到,获得积分10
1秒前
yys发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
changping应助Weiyu采纳,获得20
3秒前
3秒前
hyg完成签到,获得积分10
3秒前
L_发布了新的文献求助50
4秒前
5秒前
小罗发布了新的文献求助10
5秒前
热情越彬发布了新的文献求助10
5秒前
6秒前
6秒前
乐乐应助不来也不去采纳,获得10
6秒前
6秒前
李爱国应助阿木木采纳,获得10
7秒前
yufeizhle发布了新的文献求助10
7秒前
碧蓝觅山完成签到,获得积分10
7秒前
8秒前
白紫寒发布了新的文献求助10
9秒前
KDC发布了新的文献求助10
9秒前
9秒前
9秒前
激情的香寒关注了科研通微信公众号
9秒前
无情干饭崽完成签到,获得积分10
9秒前
lzx完成签到,获得积分10
10秒前
贪念空山发布了新的文献求助10
11秒前
Zx_1993应助平常破茧采纳,获得20
11秒前
小稻草人发布了新的文献求助10
11秒前
ding应助欢呼的世立采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
小药丸发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111916
求助须知:如何正确求助?哪些是违规求助? 4319955
关于积分的说明 13460437
捐赠科研通 4150834
什么是DOI,文献DOI怎么找? 2274465
邀请新用户注册赠送积分活动 1276349
关于科研通互助平台的介绍 1214523