Selling format selection of supply chain in the promotion period

句号(音乐) 供应链 晋升(国际象棋) 选择(遗传算法) 业务 营销 运营管理 计算机科学 经济 艺术 人工智能 政治学 政治 法学 美学
作者
Wanting Zhang
出处
期刊:Rairo-operations Research [EDP Sciences]
标识
DOI:10.1051/ro/2025048
摘要

To reduce the inventory costs caused by product surplus, firms usually offer end-of-season discounts to boost sales. With the rise of e-commerce platforms, firms often sell simultaneously through dual channels with platforms and traditional retailers. The cooperation formats between firms and platforms are usually agency selling, reselling, and direct selling. This paper will exam- ine how each supply player selects the optimal selling format by creating a two-period sales model. Our research unveils strategic insights into the optimal selling formats in promotional periods, revealing that the choice hinges on a delicate balance of consumer patience, platform leasing costs, and channel preferences. Manufacturers lean towards direct and reselling formats in times of low consumer patience to swiftly mitigate inventory backlogs, yet shift strategies to consider agency selling when consumer patience is high, aligning with platform costs and channel preferences. E-tailers, in turn, opt for direct selling when platforms excel, leveraging sales efficiency while sidestepping competition, or resort to consignment when platform leasing is economical, thus navigating the competitive landscape with agility. Platforms, prioritizing consumer patience, incline towards direct selling for impatient consumers to capitalize on immediate demand, yet pivot to reselling or agency selling depending on leasing costs, showcasing an adaptive approach to market dynamics. Finally, our findings not only shed new light on the strategic sales format selection in promotional periods but also offer actionable guidance for supply chain players. This research empower them to navigate the dynamic e-commerce landscape and optimize their promotional strategies for enhanced profitability and consumer satisfaction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyyyh发布了新的文献求助10
1秒前
老实雁蓉完成签到,获得积分10
1秒前
sdl发布了新的文献求助10
1秒前
科研通AI2S应助狂野世立采纳,获得10
1秒前
失眠青柏发布了新的文献求助10
1秒前
Uncle_J发布了新的文献求助10
2秒前
2秒前
orixero应助韶邑采纳,获得10
3秒前
3秒前
芷江景完成签到,获得积分10
3秒前
科研通AI5应助小仙女采纳,获得10
3秒前
Gilana完成签到,获得积分10
4秒前
流星完成签到,获得积分10
4秒前
4秒前
4秒前
霸气雪兰完成签到,获得积分10
4秒前
科研通AI2S应助刻苦的坤采纳,获得10
5秒前
拼搏的盼山完成签到 ,获得积分10
5秒前
霸气的怀寒完成签到,获得积分10
5秒前
5秒前
5秒前
大模型应助陈媛媛陈媛媛采纳,获得10
5秒前
an发布了新的文献求助10
6秒前
星辰大海应助jzy采纳,获得50
6秒前
summi完成签到,获得积分20
6秒前
bkagyin应助vivien采纳,获得10
6秒前
叶枫发布了新的文献求助40
6秒前
孤独的巨人完成签到,获得积分10
6秒前
舒适太阳发布了新的文献求助10
6秒前
Lucas应助明理的音响采纳,获得10
7秒前
7秒前
贺晴完成签到,获得积分10
7秒前
善学以致用应助wwww采纳,获得10
7秒前
8秒前
8秒前
情怀应助顺顺利利采纳,获得10
8秒前
小袁完成签到 ,获得积分10
9秒前
9秒前
科研八戒完成签到,获得积分10
9秒前
scm完成签到,获得积分10
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834665
求助须知:如何正确求助?哪些是违规求助? 3377161
关于积分的说明 10496785
捐赠科研通 3096583
什么是DOI,文献DOI怎么找? 1705068
邀请新用户注册赠送积分活动 820438
科研通“疑难数据库(出版商)”最低求助积分说明 772031