Real-Time Autoregressive Forecast of Cardiac Features for Psychophysiological Applications

自回归模型 计算机科学 时间序列 人工智能 数据挖掘 计量经济学 机器学习 数学
作者
Cem O. Yaldiz,David J. Lin,Asim H. Gazi,Gabriela I. Cestero,C.L. Philip Chen,Bethany K. Bracken,Aaron Winder,Spencer K. Lynn,Reza Sameni,Omer T. Inan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2025.3546148
摘要

Forecasting the near-exact moments of cardiac phases is crucial for several cardiovascular health applications. For instance, forecasts can enable the timing of specific stimuli (e.g., image or text presentation in psycholinguistic experiments) to coincide with cardiac phases like systole (cardiac ejection) and diastole (cardiac filling). This capability could be leveraged to enhance the amplitude of a subject's response, prompt them in fight-or-flight scenarios or conduct retrospective analysis for physiological predictive models. While autoregressive models have been employed for physiological signal forecasting, no prior study has explored their application to forecasting aortic opening and closing timings. This work addresses this gap by presenting a comprehensive comparative analysis of autoregressive models, including various forms of Kalman filter-based implementations, that use previously detected R-peak, aortic opening, and closing timings from electrocardiogram (ECG) and seismocardiogram (SCG) to forecast subsequent timings. We evaluate the robustness of these models to noise introduced in both SCG signals and the output of feature detectors. Our findings indicate that time-varying and multi-feature algorithms outperform others, with forecast errors below 2 ms for R-peak, below 3 ms for aortic opening timing, and below 10 ms for aortic closing timing. Importantly, we elucidate the distinct advantages of integrating multi-feature models, which improve noise robustness, and time-varying approaches, which adapt to rapid physiological changes. These models can be extended to a wide range of short-term physiological predictive systems, such as acute stress detection, neuromodulation sensor feedback, or muscle fatigue monitoring, broadening their applicability beyond cardiac feature forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yjf完成签到 ,获得积分10
刚刚
ding应助愉快的雪珍采纳,获得10
刚刚
XUNAN完成签到,获得积分10
1秒前
选课完成签到,获得积分10
1秒前
高灵雨完成签到,获得积分10
2秒前
我就是我完成签到,获得积分10
2秒前
Abx发布了新的文献求助10
2秒前
未语的阳光完成签到 ,获得积分10
3秒前
siqilinwillbephd完成签到,获得积分10
4秒前
个性无声完成签到,获得积分10
4秒前
kimiwanano完成签到,获得积分10
4秒前
wsh发布了新的文献求助10
4秒前
2323完成签到,获得积分10
5秒前
Dellamoffy完成签到,获得积分10
5秒前
鱿鱼炒黄瓜完成签到,获得积分10
5秒前
贪玩的谷芹完成签到 ,获得积分10
5秒前
稳重的如容完成签到,获得积分10
7秒前
顾君如完成签到,获得积分10
7秒前
周周完成签到,获得积分10
7秒前
123完成签到 ,获得积分10
8秒前
随性随缘随命完成签到 ,获得积分10
8秒前
北过居庸完成签到,获得积分10
8秒前
平常的毛豆应助刘文思采纳,获得10
8秒前
ccc完成签到,获得积分10
8秒前
过时的画板完成签到,获得积分10
9秒前
卓垚完成签到,获得积分10
9秒前
xiao柒柒柒完成签到,获得积分10
9秒前
泌尿小周发布了新的文献求助10
10秒前
小二郎应助wsh采纳,获得10
11秒前
很傻的狗完成签到,获得积分10
11秒前
高贵的水杯完成签到,获得积分10
12秒前
nyfz2002发布了新的文献求助10
12秒前
lw完成签到,获得积分10
13秒前
羽羽完成签到 ,获得积分10
13秒前
14秒前
拙青完成签到,获得积分10
14秒前
祭途完成签到,获得积分10
14秒前
复杂尔蓝完成签到 ,获得积分10
14秒前
abc123完成签到,获得积分10
15秒前
zy完成签到,获得积分20
16秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Happiness in the Nordic World 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857393
求助须知:如何正确求助?哪些是违规求助? 3399877
关于积分的说明 10614552
捐赠科研通 3122237
什么是DOI,文献DOI怎么找? 1721255
邀请新用户注册赠送积分活动 829008
科研通“疑难数据库(出版商)”最低求助积分说明 777972