清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Covalent and Strong Metal–Support Interactions for Robust Single-Atom Catalysts

共价键 纳米材料基催化剂 Atom(片上系统) 催化作用 金属 化学物理 纳米颗粒 化学 纳米技术 材料科学 计算机科学 有机化学 嵌入式系统 冶金
作者
Yalin Guo,Jinxia Liang,Yike Huang,Jingyi Yang,Qian Zhang,Aiqin Wang,Botao Qiao,Jun Li,Tao Zhang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:58 (15): 2440-2453 被引量:5
标识
DOI:10.1021/acs.accounts.5c00305
摘要

ConspectusOver the past decade, single-atom catalysis has emerged as a cutting-edge research frontier in the field of catalysis, because of its distinctive attributes, such as optimal metal utilization, atomically precise active sites, and unique geometric/electronic configurations. However, practical applications of single-atom catalysts (SACs) remain challenging, due to their limited stability arising from the aggregation and sintering of single atoms which possess higher formation free energy, compared to nanoparticles (NPs). Consequently, the development of thermally stable SACs is critical in fundamental studies and large-scale industrial catalysis. Currently, developing thermally stable SACs, especially under reaction conditions, remains a long-standing challenge.Metal-support interactions (MSIs) play a critical role in determining the stability and catalytic performance of supported catalysts. Among them, a strong metal-support interaction (SMSI) has been particularly significant for stabilizing supported metal species. Inspired by the role of MSIs in supported nanocatalysts, we investigated such interactions in SACs over a decade ago, leading to the discovery of covalent MSIs (CMSIs) and classical SMSI in the domain of SACs. This Account provides an overview of these two types of MSIs and summarizes their applications in the development of highly active and thermally stable SACs.We began by introducing the concept of CMSI, defined as the covalent bonding interaction between single metal atoms and the surface atoms of supports. This interaction has been instrumental in developing thermally stable SACs for scalable production and modulating their catalytic properties. Unlike traditional stabilization mechanisms that rely on surface defect sites, limited in their number and stability, CMSI stabilizes single atoms through surface lattice atoms (e.g., oxygen, carbon, etc.) in supports via covalent orbital interactions, thus significantly increasing the metal density and loading in single-atom dispersion. Notably, CMSI can also be induced on supports that do not intrinsically exhibit such an interaction by doping them with materials capable of forming CMSI, offering a universal method for fabricating high-density thermally stable SACs over diverse supports. Additionally, a simple water treatment can modulate CMSI, enhancing the reactivity by subtly tuning the local coordination environment of metal atoms to weaken the covalent bonding between single atoms and the surface atoms of supports. This approach effectively balances the tradeoff between high stability and high activity, optimizing the catalytic performance of SACs.On the other hand, while SMSI has been extensively studied in nanocatalysts for more than 40 years, its applicability to SACs remained unexplored. We recently demonstrated the identification of SMSI in Pt1/TiO2 SACs. It has been found that SACs can exhibit SMSI at significantly higher reduction temperatures. This interaction not only enhances the stability of SACs but also enables the selective encapsulation of coexisting metal NPs while keeping single atoms exposed, thereby offering a useful strategy for precisely tuning the reaction selectivity.In summary, MSIs in SACs have demonstrated significant value in both fundamental research and industrial applications. This Account concludes by highlighting current challenges and opportunities related to CMSI and SMSI in SACs, providing insights for guiding the future design and commercialization of high-efficiency, scalable, and robust SACs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
friend516完成签到 ,获得积分10
27秒前
蓝色的纪念完成签到,获得积分10
34秒前
研友_LN25rL完成签到,获得积分10
42秒前
lzn完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
ZHANG完成签到 ,获得积分10
1分钟前
大雁完成签到 ,获得积分0
1分钟前
xiliyusheng完成签到,获得积分10
1分钟前
WebCasa完成签到,获得积分10
1分钟前
2分钟前
xiliyusheng发布了新的文献求助10
2分钟前
科研通AI6应助赖胖胖采纳,获得50
2分钟前
合不着完成签到 ,获得积分10
2分钟前
张毅德完成签到 ,获得积分10
2分钟前
3分钟前
nav完成签到 ,获得积分10
3分钟前
lling完成签到 ,获得积分10
3分钟前
邓洁宜完成签到,获得积分10
3分钟前
wood完成签到,获得积分10
3分钟前
赖胖胖发布了新的文献求助50
3分钟前
uppercrusteve完成签到,获得积分10
4分钟前
无奈的代珊完成签到 ,获得积分10
4分钟前
潇洒的语蝶完成签到 ,获得积分10
5分钟前
小宋完成签到,获得积分10
5分钟前
冰凌心恋完成签到,获得积分10
5分钟前
知行者完成签到 ,获得积分10
5分钟前
好运常在完成签到 ,获得积分10
5分钟前
秋夜临完成签到,获得积分0
6分钟前
Tong完成签到,获得积分0
6分钟前
彭于晏应助科研通管家采纳,获得10
7分钟前
小新小新完成签到 ,获得积分10
7分钟前
桥西小河完成签到 ,获得积分10
7分钟前
haly完成签到 ,获得积分10
8分钟前
9分钟前
炳灿完成签到 ,获得积分10
9分钟前
清澈的爱只为中国完成签到 ,获得积分10
9分钟前
9分钟前
顺心真完成签到 ,获得积分20
10分钟前
MchemG应助Li采纳,获得10
10分钟前
蓝意完成签到,获得积分0
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565118
求助须知:如何正确求助?哪些是违规求助? 4649960
关于积分的说明 14689383
捐赠科研通 4591817
什么是DOI,文献DOI怎么找? 2519371
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463084