Optimizing the Microscopic Structure of MIL-68(Al) by Co-Doping for Pollutant Removal and Mechanism

机制(生物学) 材料科学 化学工程 兴奋剂 环境科学 工程类 光电子学 物理 量子力学
作者
Wenju Peng,Wenjie Yang,Meng Wang,Lin Zhang,Xianxiang Liu,Yaoyao Zhang
出处
期刊:Catalysts [MDPI AG]
卷期号:15 (9): 900-900
标识
DOI:10.3390/catal15090900
摘要

Four different MIL-68(Al) catalysts were synthesized and characterized by XPS, SEM, TEM, XRD, DLS, Nitrogen adsorption removal, and other methods. An aluminum-based MOF (Metal Organic Framework) (MIL-68(Al))/graphite oxide (GO) composite with TiO2 showed the largest BET specific area with best adsorption performance. Representation demonstrated that MIL-68(Al) and TiO2 nanoparticles are uniformly dispersed on the surface of the GO lamellar, and a tight heterojunction structure is formed between them. The MIL-68(Al)/GO/TiO2 exhibits good pore characteristics, structural morphology, and catalytic performance. Adsorption experiments of methyl orange can reach 99.7% with the effect of MIL-68(Al)/GO/TiO2 in water for 20 min. Moreover, the pH range can be applied to 1–13 and a high concentration of 200 mg/L methyl orange solution also worked well. In addition, this kind of catalyst can also be used for rhodamine B, methylene blue, congo red, and tetracycline in 20 min with good adsorption. Meanwhile, simple filtration can quickly recover MIL-68(Al)/GO/TiO2 and effectively reuse it. Free radical capture experiments showed a large number of •OH radicals during the adsorption of MO (Methyl Orange) solution by MIL-68(Al)/GO/TiO2. Meanwhile, the electrostatic interaction, π-π packing and hydrogen bonding make MIL-68(Al)/GO/TiO2 have a higher adsorption capacity for MO. Therefore, co-doping optimized the structure of MIL-68(Al), enhancing its stability in strong acids and bases while improving adsorption performance across a broader pH range than previously reported. This work addresses the instability of MIL-68(Al) under extreme conditions, demonstrating its significant potential for wastewater treatment applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助刚睡醒采纳,获得10
刚刚
nannan完成签到,获得积分10
刚刚
Wang1991发布了新的文献求助10
刚刚
gwgplmz发布了新的文献求助10
1秒前
1秒前
一人一般完成签到,获得积分10
1秒前
1秒前
zz完成签到,获得积分10
2秒前
66发布了新的文献求助10
2秒前
葡萄成熟时完成签到,获得积分10
2秒前
wgx完成签到 ,获得积分10
3秒前
3秒前
传奇3应助hanyuguo采纳,获得30
3秒前
jessie完成签到,获得积分10
4秒前
赘婿应助醉熏的断天采纳,获得10
4秒前
qiuqiuqiu完成签到,获得积分20
4秒前
风趣的易真完成签到,获得积分20
5秒前
5秒前
zk092988发布了新的文献求助10
6秒前
6秒前
aliuliu完成签到,获得积分10
6秒前
大模型应助Qiyun_chem采纳,获得10
6秒前
6秒前
Criminology34应助杨子墨采纳,获得10
6秒前
瘦瘦的枫叶完成签到 ,获得积分10
7秒前
顾矜应助无辜不言采纳,获得10
7秒前
HHHHH完成签到,获得积分10
8秒前
Mei发布了新的文献求助10
8秒前
wcwzcz发布了新的文献求助30
8秒前
sq给愤怒的青亦的求助进行了留言
8秒前
wanci应助风趣的易真采纳,获得10
9秒前
9秒前
susan完成签到,获得积分10
10秒前
sxy完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
小磊完成签到,获得积分20
10秒前
weimz发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285417
求助须知:如何正确求助?哪些是违规求助? 4438512
关于积分的说明 13817541
捐赠科研通 4319833
什么是DOI,文献DOI怎么找? 2371192
邀请新用户注册赠送积分活动 1366728
关于科研通互助平台的介绍 1330185