Improving the prediction of wind speed and power production of SCADA system with ensemble method and 10-fold cross-validation

梯度升压 Boosting(机器学习) 交叉验证 SCADA系统 计算机科学 人工智能 机器学习 集成学习 风力发电 风速 算法 随机森林 工程类 电气工程 物理 气象学
作者
Seyed Matin Malakouti
出处
期刊:Case studies in chemical and environmental engineering [Elsevier BV]
卷期号:8: 100351-100351 被引量:41
标识
DOI:10.1016/j.cscee.2023.100351
摘要

This research used machine-learning-based forecasting models to estimate a Supervisory control and data acquisition system's wind speed and electricity production. Six machine-learning algorithms were used to anticipate wind speed and electricity generation: a light gradient boosting machine, Gradient Boosting Regressor, an Ada Boost regressor, an elastic net, a lasso, and an ensemble (light gradient boosting machine and Ada Boost). To improve the performance of the light gradient boosting machine and Ada Boost algorithms, the ensemble (light gradient boosting machine and Ada Boost) was used to predict wind speed and production power of a Supervisory control and data acquisition system. Besides the ensemble method, the results of machine learning algorithms were obtained using 10-fold cross-validation, 5-fold cross-validation, and 4-fold cross-validation methods. The results of the algorithms were compared with each other. The results showed that the root-mean-square error of the ensemble method (light gradient boosting machine and Ada Boost) in predicting the three-month production power of the Supervisory control and data acquisition system was 11.78 with 10-fold cross-validation, and in predicting the wind speed was 0.2080 with 10-fold cross-validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wayi发布了新的文献求助10
刚刚
Rencal完成签到 ,获得积分10
刚刚
echo发布了新的文献求助10
1秒前
1秒前
沉默的画笔完成签到,获得积分10
1秒前
moai完成签到,获得积分10
1秒前
1秒前
1234567890发布了新的文献求助10
2秒前
充电宝应助ruiheng采纳,获得10
2秒前
TTT0530发布了新的文献求助10
2秒前
Yu发布了新的文献求助10
2秒前
xiaxiao应助oucedv采纳,获得80
3秒前
4秒前
4秒前
5秒前
善学以致用应助wusuowei采纳,获得10
5秒前
5秒前
heolmes完成签到,获得积分10
6秒前
6秒前
婷婷完成签到,获得积分10
6秒前
Jorna完成签到,获得积分10
6秒前
晚霞不晚发布了新的文献求助10
7秒前
隐形的乐枫完成签到,获得积分10
7秒前
8秒前
toda_erica完成签到,获得积分10
9秒前
9秒前
爆米花应助轩仔采纳,获得10
9秒前
第一张完成签到,获得积分10
10秒前
Akim应助宇圆少女科研版采纳,获得10
10秒前
糊涂的服饰完成签到,获得积分10
10秒前
Marayoung发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
大个应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
wyj0815应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054