Brain tumor categorization from imbalanced MRI dataset using weighted loss and deep feature fusion

人工智能 计算机科学 深度学习 支持向量机 多数决原则 卷积神经网络 模式识别(心理学) 机器学习 分类器(UML) 分类 特征(语言学) 语言学 哲学
作者
S. Deepak,P. M. Ameer
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:520: 94-102 被引量:49
标识
DOI:10.1016/j.neucom.2022.11.039
摘要

Deep learning-based brain tumor classification from brain magnetic resonance imaging (MRI) is a significant research problem. The research problem encounters a major challenge. The training datasets used to develop deep learning algorithms could be imbalanced with significantly more samples for one type of tumor than others. This imbalance in the training dataset affects the performance of tumor classification using deep learning models as the classifier performance gets biased towards the majority class. The article addresses the challenge of training data imbalance by proposing a novel class-weighted focal loss and studies the effects of weighted loss functions on feature learning by convolutional neural networks (CNN). However, finding optimal class weights is a challenge and the predictions of CNN trained using weighted functions could be biased. The article presents two approaches to improve the performance of the expert system: deep feature fusion and majority voting on classifier predictions. In the first approach, the deep feature fusion concerns the fusion of deep features extracted from CNN models trained using separate loss functions. The fused deep features are classified using proven models, such as support vector machine (SVM) and k-nearest neighbours (KNN). In the other approach, a majority voting is performed on the predictions for three different feature sets extracted from CNN models trained using separate loss functions. The majority voting uses the same classifier upon three different feature sets. The proposed approaches show a significant improvement in brain tumor predictions over a state of the art method based on CNN trained using cross-entropy loss. The classification errors between the majority class and the minority class samples are reduced considerably in the proposed strategies. The experiments are evaluated using the Figshare dataset, and the performance improved for the metrics: accuracy, precision, recall, balanced accuracy and F-scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
hu完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
5秒前
Costing完成签到 ,获得积分10
5秒前
大个应助梁业采纳,获得10
7秒前
今后应助miku1采纳,获得10
7秒前
沐沐心完成签到 ,获得积分10
8秒前
8秒前
10秒前
10秒前
10秒前
12秒前
PA发布了新的文献求助10
12秒前
Akim应助现实的机器猫采纳,获得10
12秒前
pu66发布了新的文献求助10
14秒前
淡然发布了新的文献求助10
15秒前
hjkk完成签到,获得积分10
16秒前
18秒前
酷波er应助wuchun采纳,获得10
18秒前
18秒前
能干妙竹完成签到,获得积分10
18秒前
18秒前
情怀应助parpate采纳,获得10
18秒前
Yolo完成签到,获得积分10
19秒前
20秒前
20秒前
收手吧大哥应助。。。采纳,获得10
21秒前
Lucas应助pu66采纳,获得10
22秒前
22秒前
orixero应助勤劳的冰菱采纳,获得10
23秒前
23秒前
毓秀完成签到 ,获得积分10
25秒前
miku1发布了新的文献求助10
25秒前
25秒前
26秒前
席凡桃发布了新的文献求助10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843681
求助须知:如何正确求助?哪些是违规求助? 3385989
关于积分的说明 10543401
捐赠科研通 3106790
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823937
科研通“疑难数据库(出版商)”最低求助积分说明 774390