亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ALF-YOLO: Enhanced YOLOv8 based on multiscale attention feature fusion for ship detection

特征(语言学) 人工智能 计算机科学 融合 模式识别(心理学) 计算机视觉 语言学 哲学
作者
Siwen Wang,Ying Li,Sihai Qiao
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:308: 118233-118233 被引量:41
标识
DOI:10.1016/j.oceaneng.2024.118233
摘要

Ship detection plays a crucial role in ensuring maritime transportation and navigation safety. However, accurately detecting multiscale ships remains a challenge due to the diversity of ship categories and locations, as well as interference from complex environments. Object detectors based on the You Only Look Once (YOLO) framework have demonstrated remarkable accuracy in automatic ship detection. In this paper, we integrate the Asymptotic Feature Pyramid Network (AFPN), Large Selective Kernel Attention Mechanism (LSK), and the fourth detection head into YOLOv8, developing a novel ALF-YOLO architecture. ALF-YOLO utilizes AFPN to enrich feature representation by integrating multiscale high-level semantic features and spatial details. It also incorporates a large selective kernel attention mechanism that dynamically adjusts its large spatial receptive field to focus more on crucial ship features, eliminating interference from complex environmental factors to enhance discriminative feature representations of ships. Additionally, we investigate the impact of different attention mechanisms on ship detection accuracy. Experimental results indicate that by integrating the outputs of several modules, our proposed ALF-YOLO model improves the classification and localization capability of targets at each stage. Compared to YOLOv8, ALF-YOLO achieved a relative increase of 0.41% and 0.43% in [email protected] on the Seaships and McShips datasets, respectively. Across different evaluation criteria, the overall performance of the ALF-YOLO method surpasses existing ship detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
我是老大应助ruru123采纳,获得10
6秒前
Soya_FERRUM发布了新的文献求助10
7秒前
cao_bq完成签到,获得积分10
9秒前
隐形曼青应助Karol采纳,获得10
16秒前
Lucas应助ZgnomeshghT采纳,获得10
29秒前
科研通AI5应助Karol采纳,获得10
29秒前
FMHChan完成签到,获得积分10
58秒前
1分钟前
何hao发布了新的文献求助10
1分钟前
馆长举报清水求助涉嫌违规
1分钟前
小包完成签到,获得积分10
1分钟前
华仔应助小包采纳,获得10
1分钟前
何hao完成签到,获得积分10
1分钟前
余悸完成签到 ,获得积分10
2分钟前
馆长举报藤井树求助涉嫌违规
2分钟前
小羊咩完成签到 ,获得积分0
2分钟前
2分钟前
pwh完成签到,获得积分20
2分钟前
2分钟前
2分钟前
曲聋五完成签到 ,获得积分0
2分钟前
3分钟前
wop111发布了新的文献求助20
3分钟前
科研通AI6应助Que采纳,获得10
3分钟前
3分钟前
3分钟前
wanci应助Soya_FERRUM采纳,获得10
3分钟前
4分钟前
yjc666发布了新的文献求助10
4分钟前
桐桐应助yjc666采纳,获得10
4分钟前
4分钟前
朴实山兰完成签到,获得积分10
4分钟前
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
4分钟前
邢契完成签到,获得积分10
4分钟前
Lucas应助wop111采纳,获得20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019542
求助须知:如何正确求助?哪些是违规求助? 4258442
关于积分的说明 13271168
捐赠科研通 4063435
什么是DOI,文献DOI怎么找? 2222599
邀请新用户注册赠送积分活动 1231647
关于科研通互助平台的介绍 1154803