Temperature prediction of lithium-ion battery based on artificial neural network model

人工神经网络 电池(电) 锂离子电池 热失控 残余物 工程类 计算机科学 人工智能 算法 量子力学 物理 功率(物理)
作者
Yuanlong Wang,Xiongjie Chen,Chaoliang Li,Yi Yu,Guan Zhou,Chunyan Wang,Wanzhong Zhao
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:228: 120482-120482 被引量:96
标识
DOI:10.1016/j.applthermaleng.2023.120482
摘要

Accurate temperature prediction is one of the most critical problems to improve battery performance, and prevent thermal runaway. However, the heat generation and heat dissipation of lithium-ion batteries have complex nonlinear characteristics and are easily affected by external factors, therefore it is difficult to accurately predict the battery temperature. In recent years, artificial neural network (ANN) has been widely used in many fields of lithium ion batteries due to its unique advantages in dealing with highly non-linear problems, such as battery modeling and SOC estimation, residual life (RUL) prediction and battery temperature prediction. However, there are few studies on temperature prediction of lithium ion batteries in foam metal thermal management system, and the current research has not reached an accurate conclusion to explain which neural network is better for temperature prediction. Therefore, an artificial neural network approach was used to estimate the temperature change of lithium-ion batteries in the metal foam thermal management system. Back propagation neural network (BP-NN), radial basis functions neural network (RBF-NN) and Elman neural networks (Elman-NN) were respectively applied to establish the temperature prediction model, and the temperature prediction performance of different neural network modeling techniques were compared. In order to verify the accuracy and validity of the neural network thermal model, the performance tests under the sample condition and the new condition were carried out respectively. The predicted result data and temperature contrast diagram of sample and test conditions are obtained. Elman neural network model has better adaptability and generalization ability, and the training time of Elman neural network model is shorter. It is more suitable for the temperature prediction of LIBs under metal foam and forced air cooling system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卡皮巴拉完成签到,获得积分10
刚刚
刚刚
elysia发布了新的文献求助10
1秒前
1秒前
xuli21315发布了新的文献求助30
2秒前
充电宝应助任成艳采纳,获得10
2秒前
2121lalala关注了科研通微信公众号
2秒前
共享精神应助Catloaf采纳,获得10
2秒前
ruan发布了新的文献求助30
3秒前
3秒前
奶茶菌发布了新的文献求助10
4秒前
4秒前
小黄人完成签到,获得积分10
4秒前
kiki完成签到,获得积分10
4秒前
5秒前
lilac完成签到,获得积分10
6秒前
6秒前
ARIA完成签到,获得积分10
7秒前
烦恼风完成签到,获得积分10
7秒前
赘婿应助chx123采纳,获得10
7秒前
badada发布了新的文献求助10
7秒前
Ava应助12采纳,获得10
7秒前
金蕊完成签到,获得积分10
8秒前
ding应助Arsenc采纳,获得10
8秒前
羊咩咩大王完成签到,获得积分20
9秒前
上官若男应助务实的秋灵采纳,获得30
9秒前
美好平凡发布了新的文献求助30
10秒前
10秒前
可爱的函函应助ruan采纳,获得30
10秒前
烦恼风发布了新的文献求助10
11秒前
12秒前
潇潇发布了新的文献求助10
13秒前
kzx完成签到,获得积分10
13秒前
14秒前
蓬蓬完成签到,获得积分10
14秒前
Owen应助标致的如豹采纳,获得10
14秒前
lucky发布了新的文献求助10
16秒前
张慧华完成签到,获得积分20
16秒前
wwy727完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601468
求助须知:如何正确求助?哪些是违规求助? 4686975
关于积分的说明 14846893
捐赠科研通 4681115
什么是DOI,文献DOI怎么找? 2539378
邀请新用户注册赠送积分活动 1506298
关于科研通互助平台的介绍 1471297