An Effective Method for Mining Negative Sequential Patterns From Data Streams

计算机科学 数据流挖掘 数据流 前缀 滑动窗口协议 数据挖掘 特里亚 树(集合论) 钥匙(锁) 流式处理 算法 数据结构 窗口(计算) 分布式计算 操作系统 电信 语言学 数学分析 哲学 计算机安全 数学 程序设计语言
作者
Nannan Zhang,Xiaoqiang Ren,Dong Xiang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 31842-31854
标识
DOI:10.1109/access.2023.3262823
摘要

Traditional negative sequential patterns(NSPs) mining algorithms are used to mine static dataset which are stored in equipment and can be scanned many times. Nowadays, with the development of technology, many applications produce a large amount of data at a very high speed, which is called as data stream. Unlike static data, data stream is transient and can usually be read only once. So, traditional NSP mining algorithm cannot be directly applied to data stream. Briefly, the key reasons are: (1) inefficient negative sequential candidates generation method, (2) one-time mining, (3) lack of real-time processing. To solve this problem, this paper proposed a new algorithm mining NSP from data stream, called nsp-DS. First, we present a method to generate positive and negative sequential candidates simultaneously, and a new negative containment definition. Second, we use a sliding window to store sample data in current time. The continuous mining of entire data stream is realized through the continuous replacement of old and new data. Finally, a prefix tree structure is introduced to store sequential patterns. Whenever the user requests, it traverses the prefix tree to output sequential patterns. The experimental results show that nsp-DS may discover NSPs from data streams.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蕃薯叶应助liuzengzhang666采纳,获得10
刚刚
ranjeah完成签到 ,获得积分10
刚刚
ssjjzhou完成签到 ,获得积分10
1秒前
lvlv发布了新的文献求助10
2秒前
彭佳丽发布了新的文献求助10
3秒前
D33sama完成签到,获得积分10
3秒前
星星掉沟了完成签到,获得积分10
3秒前
眼睛大的松鼠完成签到 ,获得积分10
6秒前
LHP完成签到,获得积分10
6秒前
8秒前
8秒前
梧桐完成签到 ,获得积分10
9秒前
wang完成签到,获得积分0
9秒前
梅思寒完成签到 ,获得积分10
10秒前
candiceperfect应助怕黑坤采纳,获得20
10秒前
yaoyaoyao完成签到 ,获得积分10
11秒前
无昵称完成签到 ,获得积分10
11秒前
11秒前
可罗雀完成签到,获得积分10
13秒前
超级的飞飞完成签到,获得积分10
13秒前
端庄亦巧完成签到 ,获得积分10
13秒前
搜集达人应助wanluu采纳,获得10
14秒前
16秒前
ILS完成签到 ,获得积分10
17秒前
科研助手6应助阿巴阿巴采纳,获得10
20秒前
书书发布了新的文献求助10
21秒前
21秒前
21秒前
聪明灵阳完成签到,获得积分10
22秒前
温柔樱桃应助surain采纳,获得10
22秒前
23秒前
lin完成签到 ,获得积分10
25秒前
sudaxia100发布了新的文献求助10
25秒前
Aruo发布了新的文献求助10
25秒前
开朗的远航完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
li发布了新的文献求助10
28秒前
随机昵称发布了新的文献求助10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812498
求助须知:如何正确求助?哪些是违规求助? 3357038
关于积分的说明 10384989
捐赠科研通 3074237
什么是DOI,文献DOI怎么找? 1688682
邀请新用户注册赠送积分活动 812296
科研通“疑难数据库(出版商)”最低求助积分说明 766986