Buckling Performance Evaluation of Double-Double Laminates with Cutouts Using Artificial Neural Network and Genetic Algorithm

屈曲 复合材料层合板 人工神经网络 结构工程 材料科学 遗传算法 有限元法 计算机科学 算法 复合材料 工程类 人工智能 机器学习
作者
Ruiqing Ju,Kai Zhao,Carol Featherston,Xiaoyang Liu
出处
期刊:Materials [MDPI AG]
卷期号:17 (19): 4677-4677 被引量:1
标识
DOI:10.3390/ma17194677
摘要

Although the double-double (DD) laminates proposed by Tsai provide a promising option for achieving better structural performance with lower manufacturing and maintenance costs, the buckling performance of perforated DD laminates still remains clear. In this study, optimal ply angles, rotation angles, and the corresponding maximum buckling loads are determined for DD laminates with various cutouts, which are used for comparisons to evaluate the effects of cutout size and shape on the buckling behaviour of perforated DD laminates. Apart from conventional circular and elliptical cutouts, the use of a combined-shape cutout for DD laminates is also investigated. As a large number of optimisations are required to obtain the maximum buckling loads for different cases in this study, an efficient optimisation method for perforated DD laminates is proposed based on an artificial neural network (ANN) and a genetic algorithm (GA). Unlike conventional quadaxial (QUAD) laminates, the repetition of a four-ply sublaminate in DD laminates makes their layup to be represented by only two ply angles; hence, the application of ANN models for predicting the buckling behaviour of various perforated DD laminates is studied in this paper. The superior performance of the ANN models is demonstrated by comparisons with other machine learning models. Instead of using the time-consuming FEA, the developed ANN model is utilised within a GA to obtain the maximum buckling load of perforated DD laminates. Compared to the circular cutout, the use of elliptical and combined-shape cutouts leads to more noticeable changes in the optimal ply angles as the cutout size increases. Based on the obtained results, the use of the combined-shape cutout is recommended for DD laminates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
moyang完成签到,获得积分10
2秒前
3秒前
4秒前
慕青应助医学林采纳,获得10
5秒前
小门发布了新的文献求助10
5秒前
t通完成签到,获得积分10
6秒前
星星赶路完成签到,获得积分10
6秒前
NexusExplorer应助zero1122采纳,获得10
7秒前
1_1发布了新的文献求助10
7秒前
核桃应助hpc采纳,获得30
8秒前
8秒前
8秒前
jiayo完成签到,获得积分10
8秒前
9秒前
星星赶路发布了新的文献求助10
9秒前
璆璆的虾完成签到,获得积分10
11秒前
cactus完成签到,获得积分20
12秒前
嘿嘿发布了新的文献求助10
12秒前
APPLE发布了新的文献求助30
13秒前
77发布了新的文献求助10
14秒前
14秒前
田様应助xuaotian采纳,获得30
15秒前
小丁同学完成签到,获得积分10
15秒前
16秒前
科目三应助小M采纳,获得10
18秒前
moyang发布了新的文献求助10
18秒前
moyang发布了新的文献求助10
18秒前
moyang发布了新的文献求助10
18秒前
moyang发布了新的文献求助10
19秒前
moyang发布了新的文献求助10
19秒前
moyang发布了新的文献求助10
19秒前
moyang发布了新的文献求助10
20秒前
moyang发布了新的文献求助10
20秒前
moyang发布了新的文献求助10
20秒前
moyang发布了新的文献求助10
20秒前
funny完成签到,获得积分10
20秒前
moyang发布了新的文献求助10
20秒前
moyang发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553336
求助须知:如何正确求助?哪些是违规求助? 4637896
关于积分的说明 14651487
捐赠科研通 4579798
什么是DOI,文献DOI怎么找? 2511862
邀请新用户注册赠送积分活动 1486788
关于科研通互助平台的介绍 1457716