Detecting emerald ash borer boring vibrations using an encoder‐decoder and improved DenseNet model

计算机科学 稳健性(进化) 可扩展性 推论 翡翠灰蛀虫 降噪 人工智能 机器学习 深度学习 噪音(视频) 生态学 生物 白蜡树 图像(数学) 基因 数据库 生物化学
作者
Jinliang Yin,Haiyan Zhang,Zhibo Chen,Juhu Li
出处
期刊:Pest Management Science [Wiley]
被引量:1
标识
DOI:10.1002/ps.8442
摘要

Abstract BACKGROUND Forest ecosystems are under constant threat from wood‐boring pests such as the Emerald ash borer (EAB), which remain elusive owing to their hidden life cycles within tree trunks. Early detection is vital to mitigate economic and ecological damage. The main current monitoring method is manual detection which is ineffective at early stages of infestation. This study introduces VibroEABNet, a deep learning‐based joint recognition network designed to enhance the detection of EAB boring vibration signals, with a novel approach integrating denoising and recognition modules. RESULTS The proposed VibroEABNet model demonstrated exceptional performance, achieving an average accuracy of 98.98% across multiple signal‐to‐noise ratios (SNRs) in test datasets and a remarkable 97.5% accuracy in real forest datasets, surpassing traditional models and other deep learning networks evaluated in this study. These findings were supported by rigorous noise resistance analysis and real dataset evaluation, indicating the model's robustness and reliability in practical applications. Furthermore, the model's efficiency was highlighted by its inference time of 26 ms and a compact model size of 8.43 MB, underscoring its suitability for deployment in resource‐limited environments. CONCLUSION The development of VibroEABNet marks a significant advancement in pest detection methodologies, offering a scalable, accurate and efficient solution for early monitoring of wood‐boring pests. The integration of a denoising module within the network structure addresses the challenge of environmental noise, one of the primary limitations in acoustic monitoring of pests. Currently, this research is limited to a specific pest. Future work will focus on the applicability of this network to other wood‐boring pests. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oushichan完成签到,获得积分10
刚刚
傲娇的棉花糖完成签到 ,获得积分10
1秒前
Hello应助dog采纳,获得10
2秒前
无情发卡应助Lucien采纳,获得30
4秒前
无私的犀牛完成签到 ,获得积分10
4秒前
5秒前
5秒前
海心完成签到,获得积分0
5秒前
NexusExplorer应助EWFDSC采纳,获得10
5秒前
陈嘟嘟完成签到,获得积分10
6秒前
玛卡巴卡完成签到 ,获得积分10
8秒前
星辰与泪予你完成签到,获得积分20
9秒前
小艺发布了新的文献求助10
10秒前
rong发布了新的文献求助10
10秒前
10秒前
愉快西牛完成签到,获得积分10
14秒前
桃酥完成签到,获得积分10
14秒前
wwd完成签到 ,获得积分10
16秒前
浪尘完成签到,获得积分10
16秒前
忐忑的小玉完成签到,获得积分10
16秒前
guozizi发布了新的文献求助30
16秒前
单手开坦克完成签到,获得积分10
17秒前
星辰大海应助科研通管家采纳,获得20
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
lasalu应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
lalala应助科研通管家采纳,获得10
17秒前
如意猕猴桃应助KSGGS采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得30
18秒前
lalala应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
changping应助科研通管家采纳,获得150
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
所所应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306329
求助须知:如何正确求助?哪些是违规求助? 4452151
关于积分的说明 13853931
捐赠科研通 4339635
什么是DOI,文献DOI怎么找? 2382737
邀请新用户注册赠送积分活动 1377636
关于科研通互助平台的介绍 1345265