Detecting emerald ash borer boring vibrations using an encoder‐decoder and improved DenseNet model

计算机科学 稳健性(进化) 可扩展性 推论 翡翠灰蛀虫 降噪 人工智能 机器学习 深度学习 噪音(视频) 生态学 生物 白蜡树 图像(数学) 基因 数据库 生物化学
作者
Jinliang Yin,Haiyan Zhang,Zhibo Chen,Juhu Li
出处
期刊:Pest Management Science [Wiley]
被引量:1
标识
DOI:10.1002/ps.8442
摘要

Abstract BACKGROUND Forest ecosystems are under constant threat from wood‐boring pests such as the Emerald ash borer (EAB), which remain elusive owing to their hidden life cycles within tree trunks. Early detection is vital to mitigate economic and ecological damage. The main current monitoring method is manual detection which is ineffective at early stages of infestation. This study introduces VibroEABNet, a deep learning‐based joint recognition network designed to enhance the detection of EAB boring vibration signals, with a novel approach integrating denoising and recognition modules. RESULTS The proposed VibroEABNet model demonstrated exceptional performance, achieving an average accuracy of 98.98% across multiple signal‐to‐noise ratios (SNRs) in test datasets and a remarkable 97.5% accuracy in real forest datasets, surpassing traditional models and other deep learning networks evaluated in this study. These findings were supported by rigorous noise resistance analysis and real dataset evaluation, indicating the model's robustness and reliability in practical applications. Furthermore, the model's efficiency was highlighted by its inference time of 26 ms and a compact model size of 8.43 MB, underscoring its suitability for deployment in resource‐limited environments. CONCLUSION The development of VibroEABNet marks a significant advancement in pest detection methodologies, offering a scalable, accurate and efficient solution for early monitoring of wood‐boring pests. The integration of a denoising module within the network structure addresses the challenge of environmental noise, one of the primary limitations in acoustic monitoring of pests. Currently, this research is limited to a specific pest. Future work will focus on the applicability of this network to other wood‐boring pests. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖暖发布了新的文献求助10
刚刚
2秒前
Barium发布了新的文献求助10
2秒前
科研通AI5应助二宝采纳,获得10
3秒前
4秒前
5秒前
彩色溪灵完成签到 ,获得积分10
5秒前
小月亮完成签到,获得积分10
6秒前
等月光落雪地完成签到,获得积分10
7秒前
本尼脸上褶子完成签到 ,获得积分10
7秒前
俊秀的白猫完成签到,获得积分10
8秒前
优秀静珊完成签到,获得积分10
9秒前
Meleo发布了新的文献求助10
9秒前
liuke发布了新的文献求助10
11秒前
拓跋箴完成签到,获得积分10
12秒前
可爱的函函应助Diplogen采纳,获得10
13秒前
简单的月饼完成签到 ,获得积分10
13秒前
李健应助木槿采纳,获得10
13秒前
14秒前
14秒前
14秒前
飞快的雅青完成签到 ,获得积分10
14秒前
14秒前
Yang应助英勇凝旋采纳,获得10
15秒前
简珹楚发布了新的文献求助10
17秒前
与山发布了新的文献求助10
17秒前
田様应助芸栀采纳,获得30
18秒前
打打应助Geminiwod采纳,获得10
18秒前
慕青应助时不我待C采纳,获得10
18秒前
柔弱天德发布了新的文献求助10
19秒前
无聊的爆米花完成签到 ,获得积分10
19秒前
lll发布了新的文献求助10
19秒前
wyk发布了新的文献求助10
19秒前
后笑晴发布了新的文献求助10
20秒前
21秒前
22秒前
老Mark完成签到,获得积分10
23秒前
23秒前
23秒前
wanci应助研友_Z7Xdl8采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4480753
求助须知:如何正确求助?哪些是违规求助? 3937538
关于积分的说明 12215390
捐赠科研通 3592539
什么是DOI,文献DOI怎么找? 1975689
邀请新用户注册赠送积分活动 1012835
科研通“疑难数据库(出版商)”最低求助积分说明 906039