Detecting emerald ash borer boring vibrations using an encoder‐decoder and improved DenseNet model

计算机科学 稳健性(进化) 可扩展性 推论 翡翠灰蛀虫 降噪 人工智能 机器学习 深度学习 噪音(视频) 生态学 生物 白蜡树 生物化学 数据库 基因 图像(数学)
作者
Jinliang Yin,Haiyan Zhang,Zhibo Chen,Juhu Li
出处
期刊:Pest Management Science [Wiley]
被引量:1
标识
DOI:10.1002/ps.8442
摘要

Abstract BACKGROUND Forest ecosystems are under constant threat from wood‐boring pests such as the Emerald ash borer (EAB), which remain elusive owing to their hidden life cycles within tree trunks. Early detection is vital to mitigate economic and ecological damage. The main current monitoring method is manual detection which is ineffective at early stages of infestation. This study introduces VibroEABNet, a deep learning‐based joint recognition network designed to enhance the detection of EAB boring vibration signals, with a novel approach integrating denoising and recognition modules. RESULTS The proposed VibroEABNet model demonstrated exceptional performance, achieving an average accuracy of 98.98% across multiple signal‐to‐noise ratios (SNRs) in test datasets and a remarkable 97.5% accuracy in real forest datasets, surpassing traditional models and other deep learning networks evaluated in this study. These findings were supported by rigorous noise resistance analysis and real dataset evaluation, indicating the model's robustness and reliability in practical applications. Furthermore, the model's efficiency was highlighted by its inference time of 26 ms and a compact model size of 8.43 MB, underscoring its suitability for deployment in resource‐limited environments. CONCLUSION The development of VibroEABNet marks a significant advancement in pest detection methodologies, offering a scalable, accurate and efficient solution for early monitoring of wood‐boring pests. The integration of a denoising module within the network structure addresses the challenge of environmental noise, one of the primary limitations in acoustic monitoring of pests. Currently, this research is limited to a specific pest. Future work will focus on the applicability of this network to other wood‐boring pests. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruguo完成签到,获得积分10
刚刚
1秒前
2秒前
研友_5Zl9D8完成签到,获得积分10
2秒前
LXhong发布了新的文献求助30
3秒前
YifanWang应助陈陈采纳,获得20
3秒前
3秒前
Orange应助木子林夕采纳,获得10
4秒前
5秒前
垃圾桶发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
parpate发布了新的文献求助10
10秒前
tough发布了新的文献求助20
11秒前
Omega完成签到,获得积分10
11秒前
小马甲应助逆旅采纳,获得10
11秒前
华志文发布了新的文献求助10
11秒前
jenningseastera应助你好采纳,获得10
14秒前
勤恳风华完成签到,获得积分10
18秒前
129753完成签到,获得积分10
21秒前
Sahar完成签到,获得积分10
22秒前
zz完成签到,获得积分10
24秒前
24秒前
激情的一斩完成签到 ,获得积分10
24秒前
垃圾桶完成签到,获得积分10
26秒前
jenningseastera应助你好采纳,获得10
26秒前
田様应助江湖浪子采纳,获得30
29秒前
syf发布了新的文献求助10
29秒前
29秒前
星辰大海应助甜美宛儿采纳,获得10
31秒前
ZZ发布了新的文献求助10
32秒前
所所应助平常心采纳,获得10
33秒前
33秒前
34秒前
俞秋烟发布了新的文献求助10
34秒前
斯文败类应助害羞雨南采纳,获得10
35秒前
mmz完成签到 ,获得积分10
39秒前
Augustines完成签到,获得积分10
39秒前
Shun发布了新的文献求助10
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Dietary intake and glutamine-serine metabolism control pathologic vascular stiffness 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845261
求助须知:如何正确求助?哪些是违规求助? 3387384
关于积分的说明 10549216
捐赠科研通 3108109
什么是DOI,文献DOI怎么找? 1712430
邀请新用户注册赠送积分活动 824404
科研通“疑难数据库(出版商)”最低求助积分说明 774767