Comparison of machine learning and logistic regression as predictive models for adverse maternal and neonatal outcomes of preeclampsia: A retrospective study

逻辑回归 随机森林 人工智能 机器学习 计算机科学 特征选择 预测建模 接收机工作特性 判别式 支持向量机 多层感知器 统计模型 决策树 人工神经网络
作者
Dongying Zheng,Xinyu Hao,Muhanmmad Khan,Lixia Wang,Fan Li,Ning Xiang,Fuli Kang,Timo Hämäläinen,Fengyu Cong,Kedong Song,Chong Qiao
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media]
卷期号:9 被引量:15
标识
DOI:10.3389/fcvm.2022.959649
摘要

Preeclampsia, one of the leading causes of maternal and fetal morbidity and mortality, demands accurate predictive models for the lack of effective treatment. Predictive models based on machine learning algorithms demonstrate promising potential, while there is a controversial discussion about whether machine learning methods should be recommended preferably, compared to traditional statistical models.We employed both logistic regression and six machine learning methods as binary predictive models for a dataset containing 733 women diagnosed with preeclampsia. Participants were grouped by four different pregnancy outcomes. After the imputation of missing values, statistical description and comparison were conducted preliminarily to explore the characteristics of documented 73 variables. Sequentially, correlation analysis and feature selection were performed as preprocessing steps to filter contributing variables for developing models. The models were evaluated by multiple criteria.We first figured out that the influential variables screened by preprocessing steps did not overlap with those determined by statistical differences. Secondly, the most accurate imputation method is K-Nearest Neighbor, and the imputation process did not affect the performance of the developed models much. Finally, the performance of models was investigated. The random forest classifier, multi-layer perceptron, and support vector machine demonstrated better discriminative power for prediction evaluated by the area under the receiver operating characteristic curve, while the decision tree classifier, random forest, and logistic regression yielded better calibration ability verified, as by the calibration curve.Machine learning algorithms can accomplish prediction modeling and demonstrate superior discrimination, while Logistic Regression can be calibrated well. Statistical analysis and machine learning are two scientific domains sharing similar themes. The predictive abilities of such developed models vary according to the characteristics of datasets, which still need larger sample sizes and more influential predictors to accumulate evidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding完成签到,获得积分10
1秒前
高大行天完成签到 ,获得积分10
2秒前
科研通AI6应助鲤鱼安青采纳,获得10
4秒前
霍霍完成签到 ,获得积分10
8秒前
好嘞完成签到,获得积分10
12秒前
13秒前
14秒前
张豪杰完成签到 ,获得积分10
18秒前
飘逸灰狼发布了新的文献求助10
18秒前
宋宣仪完成签到,获得积分20
19秒前
19秒前
lxf_123发布了新的文献求助10
20秒前
21秒前
Ellie完成签到 ,获得积分10
23秒前
Youzi完成签到,获得积分10
23秒前
23秒前
jgs驳回了顾矜应助
24秒前
呜啦啦啦发布了新的文献求助10
24秒前
烟花应助飘逸灰狼采纳,获得10
25秒前
sian发布了新的文献求助10
26秒前
27秒前
酷波er应助平安喜乐采纳,获得10
28秒前
31秒前
lxf_123完成签到,获得积分10
32秒前
深情安青应助念812采纳,获得10
33秒前
33秒前
俭朴千万发布了新的文献求助10
35秒前
21完成签到 ,获得积分10
35秒前
35秒前
ha完成签到 ,获得积分10
37秒前
38秒前
平安喜乐发布了新的文献求助10
39秒前
43秒前
沉静傲霜发布了新的文献求助10
44秒前
科研通AI6应助Cici采纳,获得10
46秒前
温暖雨完成签到,获得积分10
46秒前
小蘑菇应助咸鱼想翻身采纳,获得10
46秒前
解语花发布了新的文献求助20
48秒前
CKK发布了新的文献求助50
48秒前
研友_8DAv0L发布了新的文献求助10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
François Ravary SJ and a Sino-European Musical Culture in Nineteenth-Century Shanghai 500
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4796034
求助须知:如何正确求助?哪些是违规求助? 4116540
关于积分的说明 12735255
捐赠科研通 3846239
什么是DOI,文献DOI怎么找? 2119631
邀请新用户注册赠送积分活动 1141688
关于科研通互助平台的介绍 1031146