Deeply synergistic optical and SAR time series for crop dynamic monitoring

计算机科学 深度学习 人工智能 时间序列 合成孔径雷达 遥感 系列(地层学) 模式识别(心理学) 机器学习 生物 地质学 古生物学
作者
Wenzhi Zhao,Yang Qu,Jiage Chen,Zhanliang Yuan
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:247: 111952-111952 被引量:107
标识
DOI:10.1016/j.rse.2020.111952
摘要

Multi-temporal remote sensing imagery has been regarded as an effective tool to monitor cropland. But optical sensors often miss key stages for crop growth because of clouds, which poses challenges to many studies. The synergistic of SAR and optical data is expected to lift this problem, especially in areas with persistent cloud cover. However, due to the different characteristics of optical and SAR sensors, it is difficult to build a relationship between the two with most existing methods, let alone construct the long-time correlations to fill optic observation gaps using SAR data. Inspired by deep learning, this study presents a novel strategy to learn the relationship between optical and SAR time series based on the sequence of contextual information. To be specific, we extended the conventional CNN-RNN to build Multi-CNN-Sequence to Sequence (MCNN-Seq) model, and formulate the correlation between the optic and SAR time series sequences. We verified the MCNN-Seq model and found that the accuracy of the predicted optical image was determined by crop types and phenological stages, both in the spatial and temporal domain, respectively. For several crops, such as onion, winter wheat, corn, and sugar beet, our predictions are fitting well with R2 0.9409, 0.9824,0.9157, and 0.9749, respectively. Compared to CNN and RNN, the simulation accuracy achieved by the MCNN-Seq model is much better in terms of R2 and RMSE. In general, results demonstrate that deep learning models have the potential to synergize SAR and optical data and provide replaceable information when the optical data has a long data gap due to the persistent clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
负责的皮卡丘应助LDDD采纳,获得10
刚刚
刚刚
香蕉觅云应助nong12123采纳,获得10
1秒前
xun发布了新的文献求助10
1秒前
端木眼眼完成签到,获得积分10
2秒前
科研通AI5应助李基米德采纳,获得10
2秒前
小马甲应助路瑶瑶采纳,获得20
2秒前
大个应助阿星捌采纳,获得10
2秒前
淡然白安发布了新的文献求助10
4秒前
4秒前
轨迹完成签到 ,获得积分10
5秒前
哆啦的空间站完成签到,获得积分0
5秒前
wanci应助南有乔木采纳,获得10
5秒前
NIUB发布了新的文献求助10
6秒前
丘比特应助heitao采纳,获得10
6秒前
无花果应助sqj采纳,获得30
7秒前
8秒前
科研通AI2S应助Darcy采纳,获得10
8秒前
材料化学左亚坤完成签到,获得积分10
8秒前
大个应助Oops采纳,获得10
8秒前
SciGPT应助13633501455采纳,获得10
8秒前
lllous完成签到,获得积分10
8秒前
Akim应助混沌采纳,获得10
8秒前
亦犹未进发布了新的文献求助30
9秒前
苏汇筎完成签到,获得积分10
9秒前
李健应助minsu采纳,获得10
9秒前
9秒前
kekekek完成签到 ,获得积分10
10秒前
英俊的铭应助幸运的尔芙采纳,获得10
11秒前
aaa1完成签到 ,获得积分10
11秒前
12秒前
Akim应助无心的翰采纳,获得10
14秒前
黄义发布了新的文献求助10
14秒前
赘婿应助Ymir采纳,获得10
15秒前
15秒前
111完成签到,获得积分10
15秒前
zm完成签到,获得积分10
16秒前
biov完成签到,获得积分10
16秒前
天天快乐应助nh3采纳,获得10
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206341
求助须知:如何正确求助?哪些是违规求助? 4384805
关于积分的说明 13654605
捐赠科研通 4243073
什么是DOI,文献DOI怎么找? 2327875
邀请新用户注册赠送积分活动 1325614
关于科研通互助平台的介绍 1277710