微粒
测速
对称(几何)
辐射
平面(几何)
物理
粒子跟踪测速
超声波
光学
粒子图像测速
声学
机械
材料科学
几何学
数学
湍流
作者
Rune Barnkob,Per Augustsson,Thomas Laurell,Henrik Bruus
出处
期刊:Physical Review E
[American Physical Society]
日期:2012-11-13
卷期号:86 (5): 056307-056307
被引量:247
标识
DOI:10.1103/physreve.86.056307
摘要
We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10 μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming flow, while the motion of the largest particles is dominated by the acoustic radiation force. For all particle sizes we predict theoretically how much of the particle velocity is due to radiation and streaming, respectively. These predictions include corrections for particle-wall interactions and ultrasonic thermoviscous effects and match our measurements within the experimental uncertainty. Finally, we predict theoretically and confirm experimentally that the ratio between the acoustic radiation- and streaming-induced particle velocities is proportional to the actuation frequency, the acoustic contrast factor, and the square of the particle size, while it is inversely proportional to the kinematic viscosity.
科研通智能强力驱动
Strongly Powered by AbleSci AI