新城疫
维罗细胞
病毒学
效价
胚胎化的
病毒
生物
微生物学
作者
Julia Puppin Chaves Fulber,Omar Farnós,Sascha Kießlich,Zeyu Yang,Shantoshini Dash,Leonardo Susta,Sarah K. Wootton,Amine Kamen
出处
期刊:Vaccines
[MDPI AG]
日期:2021-11-16
卷期号:9 (11): 1335-1335
被引量:18
标识
DOI:10.3390/vaccines9111335
摘要
The ongoing COVID-19 pandemic drew global attention to infectious diseases, attracting numerous resources for development of pandemic preparedness plans and vaccine platforms-technologies with robust manufacturing processes that can quickly be pivoted to target emerging diseases. Newcastle Disease Virus (NDV) has been studied as a viral vector for human and veterinary vaccines, but its production relies heavily on embryonated chicken eggs, with very few studies producing NDV in cell culture. Here, NDV is produced in suspension Vero cells, and analytical assays (TCID50 and ddPCR) are developed to quantify infectious and total viral titer. NDV-GFP and NDV-FLS (SARS-CoV-2 full-length spike protein) constructs were adapted to replicate in Vero and HEK293 suspension cultures using serum-free media, while fine-tuning parameters such as MOI, temperature, and trypsin concentration. Shake flask productions with Vero cells resulted in infectious titers of 1.07 × 108 TCID50/mL for NDV-GFP and 1.33 × 108 TCID50/mL for NDV-FLS. Production in 1 L batch bioreactors also resulted in high titers in culture supernatants, reaching 2.37 × 108 TCID50/mL for NDV-GFP and 3.16 × 107 TCID50/mL for NDV-FLS. This shows effective NDV production in cell culture, building the basis for a scalable vectored-vaccine manufacturing process that can be applied to different targets.
科研通智能强力驱动
Strongly Powered by AbleSci AI