施特拉森演算法
对数图
二进制对数
整数(计算机科学)
组合数学
乘法算法
乘法(音乐)
猜想
数学
上下界
时间复杂性
离散数学
计算机科学
算术
二进制数
矩阵乘法
物理
数学分析
量子力学
程序设计语言
量子
标识
DOI:10.1145/1250790.1250800
摘要
For more than 35 years, the fastest known method for integer multiplication has been the Schönhage-Strassen algorithm running in time O(n log n log log n). Under certain restrictive conditions there is a corresponding Ω(n log n) lower bound. The prevailing conjecture has always been that the complexity of an optimal algorithm is Θ(n log n). We present a major step towards closing the gap from above by presenting an algorithm running in time n log n, 2O(log* n).
科研通智能强力驱动
Strongly Powered by AbleSci AI