计算机科学
洪水(心理学)
人工神经网络
合流下水道
循环神经网络
期限(时间)
人工智能
互联网
短时记忆
物联网
数据挖掘
多层感知器
感知器
机器学习
实时计算
计算机安全
万维网
生态学
物理
雨水
量子力学
地表径流
生物
心理学
心理治疗师
作者
Duo Zhang,Geir Lindholm,Harsha Ratnaweera
标识
DOI:10.1016/j.jhydrol.2017.11.018
摘要
Combined sewer overflow causes severe water pollution, urban flooding and reduced treatment plant efficiency. Understanding the behavior of CSO structures is vital for urban flooding prevention and overflow control. Neural networks have been extensively applied in water resource related fields. In this study, we collect data from an Internet of Things monitoring CSO structure and build different neural network models for simulating and predicting the water level of the CSO structure. Through a comparison of four different neural networks, namely multilayer perceptron (MLP), wavelet neural network (WNN), long short-term memory (LSTM) and gated recurrent unit (GRU), the LSTM and GRU present superior capabilities for multi-step-ahead time series prediction. Furthermore, GRU achieves prediction performances similar to LSTM with a quicker learning curve.
科研通智能强力驱动
Strongly Powered by AbleSci AI