EXTRA: An Exact First-Order Algorithm for Decentralized Consensus Optimization

数学 迭代函数 凸函数 数学优化 共识 订单(交换) 正多边形 收敛速度 最优化问题 趋同(经济学) 拓扑(电路) 算法 多智能体系统 计算机科学 组合数学 频道(广播) 数学分析 几何学 人工智能 经济 经济增长 计算机网络 财务
作者
Wei Shi,Qing Ling,Gang Wu,Wotao Yin
出处
期刊:Siam Journal on Optimization [Society for Industrial and Applied Mathematics]
卷期号:25 (2): 944-966 被引量:1181
标识
DOI:10.1137/14096668x
摘要

Recently, there has been growing interest in solving consensus optimization problems in a multiagent network. In this paper, we develop a decentralized algorithm for the consensus optimization problem $\mathrm{minimize}_{x\in\mathbb{R}^p}~\bar{f}(x)=\frac{1}{n}\sum_{i=1}^n f_i(x),$ which is defined over a connected network of $n$ agents, where each function $f_i$ is held privately by agent $i$ and encodes the agent's data and objective. All the agents shall collaboratively find the minimizer while each agent can only communicate with its neighbors. Such a computation scheme avoids a data fusion center or long-distance communication and offers better load balance to the network. This paper proposes a novel decentralized exact first-order algorithm (abbreviated as EXTRA) to solve the consensus optimization problem. “Exact” means that it can converge to the exact solution. EXTRA uses a fixed, large step size, which can be determined independently of the network size or topology. The local variable of every agent $i$ converges uniformly and consensually to an exact minimizer of $\bar{f}$. In contrast, the well-known decentralized gradient descent (DGD) method must use diminishing step sizes in order to converge to an exact minimizer. EXTRA and DGD have the same choice of mixing matrices and similar per-iteration complexity. EXTRA, however, uses the gradients of the last two iterates, unlike DGD which uses just that of the last iterate. EXTRA has the best known convergence rates among the existing synchronized first-order decentralized algorithms for minimizing convex Lipschitz--differentiable functions. Specifically, if the $f_i$'s are convex and have Lipschitz continuous gradients, EXTRA has an ergodic convergence rate $O(\frac{1}{k})$ in terms of the first-order optimality residual. In addition, as long as $\bar{f}$ is (restricted) strongly convex (not all individual $f_i$'s need to be so), EXTRA converges to an optimal solution at a linear rate $O(C^{-k})$ for some constant $C>1$.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花Cheung发布了新的文献求助10
刚刚
Jenyy41完成签到 ,获得积分10
1秒前
1秒前
2秒前
syl发布了新的文献求助10
3秒前
3秒前
4秒前
隐形曼青应助恬恬采纳,获得10
4秒前
5秒前
小胡完成签到,获得积分10
5秒前
LR完成签到,获得积分10
6秒前
7秒前
7秒前
qq完成签到,获得积分10
7秒前
7秒前
spenley发布了新的文献求助10
7秒前
传奇3应助chuchu采纳,获得10
7秒前
独特背包完成签到,获得积分10
8秒前
8秒前
9秒前
生椰拿铁不加生椰完成签到 ,获得积分10
9秒前
YiYing_W发布了新的文献求助10
11秒前
zh完成签到,获得积分10
11秒前
11秒前
哈哈哈完成签到,获得积分10
12秒前
渤大彭于晏完成签到,获得积分10
12秒前
打打应助小锦章采纳,获得10
12秒前
HK发布了新的文献求助10
12秒前
dingdingding完成签到,获得积分10
12秒前
14秒前
波比大王发布了新的文献求助10
14秒前
Waterson发布了新的文献求助10
14秒前
无花果应助稳重的悟空采纳,获得10
15秒前
慕青应助ComeOn采纳,获得10
15秒前
酷波er应助动人的凤凰采纳,获得10
16秒前
SciGPT应助奔波儿灞采纳,获得10
16秒前
16秒前
Lucas应助zyc采纳,获得10
16秒前
翻翻完成签到,获得积分10
16秒前
HAO发布了新的文献求助10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814903
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399256
捐赠科研通 3076557
什么是DOI,文献DOI怎么找? 1689851
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608