Dual-Channel Prototype Network for Few-Shot Pathology Image Classification

计算机科学 判别式 人工智能 卷积神经网络 深度学习 模式识别(心理学) 过度拟合 分类器(UML) 机器学习 特征提取 上下文图像分类 概化理论 人工神经网络 图像(数学) 数学 统计
作者
Hao Quan,Xinjia Li,Dayu Hu,Tianhang Nan,Xiaoyu Cui
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (7): 4132-4144 被引量:20
标识
DOI:10.1109/jbhi.2024.3386197
摘要

In the field of pathology, the scarcity of certain diseases and the difficulty of annotating images hinder the development of large, high-quality datasets, which in turn affects the advancement of deep learning-assisted diagnostics. Few-shot learning has demonstrated unique advantages in modeling tasks with limited data, yet explorations of this method in the field of pathology remain in the early stages. To address this issue, we present a dual-channel prototype network (DCPN), a novel few-shot learning approach for efficiently classifying pathology images with limited data. The DCPN leverages self-supervised learning to extend the pyramid vision transformer (PVT) to few-shot classification tasks and combines it with a convolutional neural network to construct a dual-channel network for extracting multi-scale, high-precision pathological features, thereby substantially enhancing the generalizability of prototype representations. Additionally, we design a soft voting classifier based on multi-scale features to further augment the discriminative power of the model in complex pathology image classification tasks. We constructed three few-shot classification tasks with varying degrees of domain shift using three publicly available pathological datasets-CRCTP, NCTCRC, and LC25000-to emulate real-world clinical scenarios. The results demonstrated that the DCPN outperformed the prototypical network across all metrics, achieving the highest accuracies in same-domain tasks-70.86% for 1-shot, 82.57% for 5-shot, and 85.2% for 10-shot setups-corresponding to improvements of 5.51%, 5.72%, and 6.81%, respectively, over the prototypical network. Notably, in the same-domain 10-shot setting, the accuracy of the DCPN (85.2%) surpassed that of the PVT-based supervised learning model (85.15%), confirming its potential to diagnose rare diseases within few-shot learning frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
horsam发布了新的文献求助10
刚刚
xing完成签到,获得积分10
刚刚
阿萨十大完成签到,获得积分10
刚刚
沫栀完成签到,获得积分10
刚刚
1秒前
wwwwwcy发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
Pan发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
橘桉完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
天天快乐应助喵喵张采纳,获得10
6秒前
天天快乐应助植保匠人采纳,获得10
6秒前
feifei发布了新的文献求助10
7秒前
大模型应助沫栀采纳,获得10
8秒前
龙腾虎跃发布了新的文献求助10
9秒前
Serena完成签到 ,获得积分10
9秒前
10秒前
顾矜应助嘻哈哈采纳,获得10
10秒前
洒脱发布了新的文献求助10
10秒前
10秒前
L~发布了新的文献求助10
11秒前
lemon完成签到,获得积分10
12秒前
阳光大山发布了新的文献求助10
12秒前
13秒前
圈圈完成签到,获得积分10
13秒前
Vanff完成签到,获得积分10
15秒前
15秒前
16秒前
abjz发布了新的文献求助10
16秒前
XZD完成签到,获得积分10
17秒前
SciGPT应助L~采纳,获得10
18秒前
18秒前
老福贵儿应助lll采纳,获得10
19秒前
浮游应助沉默的钵钵鸡采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536205
求助须知:如何正确求助?哪些是违规求助? 4623940
关于积分的说明 14590018
捐赠科研通 4564400
什么是DOI,文献DOI怎么找? 2501719
邀请新用户注册赠送积分活动 1480512
关于科研通互助平台的介绍 1451794