Generative AI in Pre-Service Science Teacher Education: A Systematic Review

生成语法 科学教育 系统回顾 服务(商务) 计算机科学 数学教育 心理学 人工智能 政治学 梅德林 业务 营销 法学
作者
Theodoros Spasopoulos,Dimitrios J. Sotiropoulos,Michail Kalogiannakis
出处
期刊:Advances in Mobile Learning Educational Research [Syncsci Publishing Pte., Ltd.]
卷期号:5 (2): 1501-1523 被引量:3
标识
DOI:10.25082/amler.2025.02.007
摘要

Despite the increasing adoption of Generative Artificial Intelligence (GenAI) in education, there is a lack of comprehensive reviews on how GenAI is being utilized within Pre-Service Teachers (PSTs) in science. This systematic literature review (SLR) aims to address this gap by examining the extent and nature of GenAI integration in future science teachers' preparation programs. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology, 21 peer-reviewed empirical studies published between 2022 and 2025 were identified and analyzed through qualitative thematic synthesis. The analysis addresses three research questions: 1) the extent to which GenAI is used in the curriculum of PSTs in science education; 2) how PSTs use GenAI tools to develop a deeper understanding of science and develop scientific reasoning; and 3) how PSTs in science education are using GenAI tools to plan and carry out teaching activities. Findings reveal that the integration of GenAI into curricula remains fragmented and often experimental, typically confined to technology-related courses or pilot projects. PSTs primarily utilize GenAI tools for conceptual clarification, hypothesis generation, and self-regulated learning. Furthermore, these tools serve as cognitive partners in designing lesson plans, differentiating instruction, and simulating classroom scenarios. However, the absence of structured pedagogical guidance often leads to superficial use and limited critical evaluation of AI-generated content. This review highlights the transformative potential of GenAI in science education while underscoring the need for institutional frameworks, faculty training, and the development of AI literacy. Future research should focus on how to sustainably integrate GenAI into teacher education to foster scientific reasoning, pedagogical adaptability, and responsible use of technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微信研友完成签到,获得积分10
1秒前
小马甲应助危机的语琴采纳,获得10
2秒前
2秒前
3秒前
fafa完成签到,获得积分10
5秒前
5秒前
Jackson完成签到 ,获得积分10
7秒前
12345发布了新的文献求助10
7秒前
ljq完成签到,获得积分10
8秒前
夏熠完成签到,获得积分10
8秒前
10秒前
罗Eason发布了新的文献求助10
11秒前
aw完成签到,获得积分10
12秒前
Jeannie完成签到,获得积分10
14秒前
16秒前
我爱陶子完成签到 ,获得积分10
16秒前
星辰大海应助一个西藏采纳,获得10
17秒前
19秒前
咩咩羊完成签到,获得积分10
19秒前
pluto应助脆脆鲨采纳,获得10
20秒前
20秒前
20秒前
加油小白菜完成签到,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助10
23秒前
Secret_不能说的秘密完成签到,获得积分10
23秒前
24秒前
shelly发布了新的文献求助10
25秒前
科研废物完成签到 ,获得积分10
25秒前
小崔加油完成签到 ,获得积分10
29秒前
刘兆亮完成签到,获得积分10
31秒前
31秒前
科研通AI2S应助牛大锤采纳,获得10
32秒前
田様应助复杂厉采纳,获得10
32秒前
shelly完成签到,获得积分10
34秒前
34秒前
东1991完成签到,获得积分20
35秒前
我是中国人完成签到,获得积分10
36秒前
pennell01完成签到,获得积分10
36秒前
鳗鱼梦寒发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856886
捐赠科研通 4696312
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851