Machine Learning-Powered Encrypted Network Traffic Analysis: A Comprehensive Survey

计算机科学 加密 交通分类 流量分析 深包检验 有效载荷(计算) 异常检测 鉴定(生物学) 工作流程 交通整形 交通生成模型 情报分析 数据挖掘 明文 网络数据包 计算机安全 数据科学 网络流量控制 计算机网络 数据库 植物 生物
作者
Meng Shen,Ke Ye,Xingtong Liu,Liehuang Zhu,Jiawen Kang,Shui Yu,Qi Li,Ke Xu
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 791-824 被引量:75
标识
DOI:10.1109/comst.2022.3208196
摘要

Traffic analysis is the process of monitoring network activities, discovering specific patterns, and gleaning valuable information from network traffic. It can be applied in various fields such as network assert probing and anomaly detection. With the advent of network traffic encryption, however, traffic analysis becomes an arduous task. Due to the invisibility of packet payload, traditional traffic analysis methods relying on capturing valuable information from plaintext payload are likely to lose efficacy. Machine learning has been emerging as a powerful tool to extract informative features without getting access to payload, and thus is widely employed in encrypted traffic analysis. In this paper, we present a comprehensive survey on recent achievements in machine learning-powered encrypted traffic analysis. To begin with, we review the literature in this area and summarize the analysis goals that serve as the basis for literature classification. Then, we abstract the workflow of encrypted traffic analysis with machine learning tools, including traffic collection, traffic representation, traffic analysis method, and performance evaluation. For the surveyed studies, the requirements of classification granularity and information timeliness may vary a lot for different analysis goals. Hence, in terms of the goal of traffic analysis, we present a comprehensive review on existing studies according to four categories: network asset identification, network characterization, privacy leakage detection, and anomaly detection. Finally, we discuss the challenges and directions for future research on encrypted traffic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
LZH完成签到,获得积分10
刚刚
克里斯就是逊啦完成签到,获得积分10
1秒前
2秒前
2秒前
贪玩翎发布了新的文献求助10
2秒前
3秒前
小穆发布了新的文献求助10
3秒前
计可盈完成签到,获得积分20
4秒前
策略完成签到,获得积分10
4秒前
李冬卿完成签到,获得积分10
5秒前
5秒前
欢呼的念瑶完成签到,获得积分10
5秒前
郦如花发布了新的文献求助30
6秒前
斯文败类应助HM采纳,获得10
7秒前
7秒前
kitty完成签到 ,获得积分10
8秒前
无极微光应助猇会不会采纳,获得20
8秒前
煜琪发布了新的文献求助10
8秒前
8秒前
sdyPlant完成签到,获得积分10
8秒前
万能图书馆应助ZSJ采纳,获得10
8秒前
heure发布了新的文献求助10
9秒前
小蘑菇应助拉长的尔冬采纳,获得10
9秒前
9秒前
传奇3应助yy采纳,获得10
9秒前
Kerwin完成签到,获得积分10
9秒前
芋圆应助佳润采纳,获得10
10秒前
浮游应助佳润采纳,获得10
10秒前
健忘傲柏完成签到,获得积分10
12秒前
一修完成签到,获得积分10
12秒前
13秒前
SciGPT应助发发采纳,获得10
13秒前
善学以致用应助橘子采纳,获得10
13秒前
缓慢墨镜发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
鱼维尼完成签到,获得积分10
16秒前
16秒前
starcraftfan完成签到,获得积分10
16秒前
小学猹完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494624
求助须知:如何正确求助?哪些是违规求助? 4592297
关于积分的说明 14436374
捐赠科研通 4525125
什么是DOI,文献DOI怎么找? 2479216
邀请新用户注册赠送积分活动 1464035
关于科研通互助平台的介绍 1437045