Retrieval augmented generation for large language models in healthcare: A systematic review

医疗保健 计算机科学 自然语言处理 政治学 法学
作者
Lameck Mbangula Amugongo,Pietro Mascheroni,Steven E. Brooks,Stefan Doering,Jan Seidel
出处
期刊:PLOS digital health [Public Library of Science]
卷期号:4 (6): e0000877-e0000877
标识
DOI:10.1371/journal.pdig.0000877
摘要

Large Language Models (LLMs) have demonstrated promising capabilities to solve complex tasks in critical sectors such as healthcare. However, LLMs are limited by their training data which is often outdated, the tendency to generate inaccurate (“hallucinated”) content and a lack of transparency in the content they generate. To address these limitations, retrieval augmented generation (RAG) grounds the responses of LLMs by exposing them to external knowledge sources. However, in the healthcare domain there is currently a lack of systematic understanding of which datasets, RAG methodologies and evaluation frameworks are available. This review aims to bridge this gap by assessing RAG-based approaches employed by LLMs in healthcare, focusing on the different steps of retrieval, augmentation and generation. Additionally, we identify the limitations, strengths and gaps in the existing literature. Our synthesis shows that 78.9% of studies used English datasets and 21.1% of the datasets are in Chinese. We find that a range of techniques are employed RAG-based LLMs in healthcare, including Naive RAG, Advanced RAG, and Modular RAG. Surprisingly, proprietary models such as GPT-3.5/4 are the most used for RAG applications in healthcare. We find that there is a lack of standardised evaluation frameworks for RAG-based applications. In addition, the majority of the studies do not assess or address ethical considerations related to RAG in healthcare. It is important to account for ethical challenges that are inherent when AI systems are implemented in the clinical setting. Lastly, we highlight the need for further research and development to ensure responsible and effective adoption of RAG in the medical domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋半雪发布了新的文献求助10
刚刚
您不疼发布了新的文献求助10
刚刚
xinghy应助放飞的羊驼采纳,获得10
1秒前
梦_筱彩完成签到 ,获得积分10
1秒前
2秒前
胡闹闹发布了新的文献求助10
2秒前
2秒前
2秒前
陈坤完成签到,获得积分10
3秒前
zxb关闭了zxb文献求助
3秒前
CipherSage应助安安采纳,获得10
3秒前
情怀应助大帅哥采纳,获得10
4秒前
我爱睡懒觉完成签到,获得积分10
4秒前
4秒前
无花果应助betty采纳,获得10
4秒前
传奇3应助璀璨采纳,获得10
5秒前
营养牛发布了新的文献求助10
5秒前
烟花应助xW采纳,获得10
5秒前
大板栗发布了新的文献求助10
6秒前
zchyx发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
咖啡续命发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
orixero应助一包辣条采纳,获得10
12秒前
12秒前
13秒前
9999完成签到,获得积分10
13秒前
Sene发布了新的文献求助10
13秒前
研友_85YJY8发布了新的文献求助10
13秒前
BigBoss完成签到,获得积分10
13秒前
小马甲应助安寒采纳,获得10
15秒前
15秒前
tiantale完成签到 ,获得积分10
15秒前
hbj完成签到,获得积分10
16秒前
李健的粉丝团团长应助dada采纳,获得10
16秒前
梦于行发布了新的文献求助10
16秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110698
求助须知:如何正确求助?哪些是违规求助? 3649106
关于积分的说明 11557960
捐赠科研通 3354352
什么是DOI,文献DOI怎么找? 1842873
邀请新用户注册赠送积分活动 909091
科研通“疑难数据库(出版商)”最低求助积分说明 825936