Predicting early recurrence in locally advanced gastric cancer after gastrectomy Using CT-based deep learning model: a multicenter study

医学 接收机工作特性 人工智能 内科学 多层感知器 肿瘤科 机器学习 放射科 计算机科学 人工神经网络
作者
Xinyu Guo,Mingzhen Chen,Lingling Zhou,Lingyi Zhu,Shuang Liu,Liyun Zheng,Yongjun Chen,Qiang Li,Shuiwei Xia,Chenying Lu,Minjiang Chen,Feng Chen,Jiansong Ji
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:1
标识
DOI:10.1097/js9.0000000000002184
摘要

Background: Early recurrence in patients with locally advanced gastric cancer (LAGC) portends aggressive biological characteristics and a dismal prognosis. Prediction of early recurrence may help determine treatment strategies for LAGC. To develop a deep learning model for early recurrence prediction (DLER) based on preoperative multiphase computed tomography (CT) images and further explore the underlying biological basis of the proposed model. Materials and methods: In this retrospective study, 620 LAGC patients from January 2015 to March 2023 were included in three medical centres and The Cancer Image Archive (TCIA). The DLER model was developed using DenseNet169 and multiphase 2.5D CT images, and then crucial clinical factors of early recurrence were integrated into the multilayer perceptron classifier (MLP) model (DLER MLP ). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity were applied to measure the performance of different models. The log-rank test was used to analyze survival outcomes. The genetic analysis was performed using RNA-sequencing data from TCIA. Results: Using the MLP classifier combined with clinical factors, DLR MLP showed higher performance than DLER and clinical models in predicting early recurrence in internal validation set (AUC: 0.891 vs 0.797, 0.752), two external test set1 (0.814 vs. 0.666, 0.808) and external test2 (0.834 vs. 0.756, 0.766). Early recurrence-free survival, disease-free survival, and overall survival can be stratified using the DLER MLP (all P < .001). High DLER MLP score is associated with upregulated tumour proliferation pathways (WNT, MYC, and KRAS signalling) and immune cell infiltration in the tumour microenvironment. Conclusion: The DLER MLP based on CT images was able to predict early recurrence of patients with LAGC and served as a useful tool for optimizing treatment strategies and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
徐盛龙发布了新的文献求助10
刚刚
5秒前
li完成签到,获得积分10
5秒前
酷波er应助诗谙采纳,获得10
5秒前
hht12211完成签到,获得积分10
6秒前
wyz653完成签到,获得积分10
6秒前
科科克尔克完成签到 ,获得积分10
6秒前
6秒前
科研小白书hz完成签到 ,获得积分10
7秒前
静静静发布了新的文献求助10
9秒前
bingbing完成签到,获得积分10
9秒前
Bruce完成签到,获得积分10
10秒前
wyg117完成签到,获得积分10
10秒前
诗谙完成签到,获得积分10
10秒前
小狗不爱睡懒觉完成签到,获得积分20
11秒前
12秒前
阿玺发布了新的文献求助10
12秒前
13秒前
飞雪完成签到,获得积分10
14秒前
Dreamhappy完成签到,获得积分10
14秒前
打打应助徐盛龙采纳,获得10
14秒前
领导范儿应助VDC采纳,获得10
15秒前
16秒前
iNk应助小狗不爱睡懒觉采纳,获得20
16秒前
早早完成签到,获得积分10
16秒前
shelemi发布了新的文献求助10
16秒前
Sithole发布了新的文献求助10
17秒前
ygg1应助li199624采纳,获得10
18秒前
jichenzhang2024完成签到,获得积分10
18秒前
裴雅柔完成签到,获得积分10
21秒前
zhangxin发布了新的文献求助10
22秒前
天天快乐应助静静静采纳,获得10
22秒前
LXZ完成签到,获得积分10
24秒前
24秒前
FENG完成签到,获得积分10
25秒前
25秒前
小白应助fuguier采纳,获得10
26秒前
刘十六完成签到 ,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807486
求助须知:如何正确求助?哪些是违规求助? 4122253
关于积分的说明 12753923
捐赠科研通 3857218
什么是DOI,文献DOI怎么找? 2123498
邀请新用户注册赠送积分活动 1145608
关于科研通互助平台的介绍 1038221