Predicting early recurrence in locally advanced gastric cancer after gastrectomy Using CT-based deep learning model: a multicenter study

医学 接收机工作特性 人工智能 内科学 多层感知器 肿瘤科 机器学习 放射科 计算机科学 人工神经网络
作者
Xinyu Guo,Mingzhen Chen,Lingling Zhou,Lingyi Zhu,Shuang Liu,Liyun Zheng,Yongjun Chen,Qiang Li,Shuiwei Xia,Chenying Lu,Minjiang Chen,Feng Chen,Jiansong Ji
出处
期刊:International Journal of Surgery [Elsevier]
被引量:3
标识
DOI:10.1097/js9.0000000000002184
摘要

Background: Early recurrence in patients with locally advanced gastric cancer (LAGC) portends aggressive biological characteristics and a dismal prognosis. Prediction of early recurrence may help determine treatment strategies for LAGC. To develop a deep learning model for early recurrence prediction (DLER) based on preoperative multiphase computed tomography (CT) images and further explore the underlying biological basis of the proposed model. Materials and methods: In this retrospective study, 620 LAGC patients from January 2015 to March 2023 were included in three medical centres and The Cancer Image Archive (TCIA). The DLER model was developed using DenseNet169 and multiphase 2.5D CT images, and then crucial clinical factors of early recurrence were integrated into the multilayer perceptron classifier (MLP) model (DLER MLP ). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity were applied to measure the performance of different models. The log-rank test was used to analyze survival outcomes. The genetic analysis was performed using RNA-sequencing data from TCIA. Results: Using the MLP classifier combined with clinical factors, DLR MLP showed higher performance than DLER and clinical models in predicting early recurrence in internal validation set (AUC: 0.891 vs 0.797, 0.752), two external test set1 (0.814 vs. 0.666, 0.808) and external test2 (0.834 vs. 0.756, 0.766). Early recurrence-free survival, disease-free survival, and overall survival can be stratified using the DLER MLP (all P < .001). High DLER MLP score is associated with upregulated tumour proliferation pathways (WNT, MYC, and KRAS signalling) and immune cell infiltration in the tumour microenvironment. Conclusion: The DLER MLP based on CT images was able to predict early recurrence of patients with LAGC and served as a useful tool for optimizing treatment strategies and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
susu发布了新的文献求助10
1秒前
小嘴巴发布了新的文献求助30
2秒前
怎么说发布了新的文献求助10
4秒前
5秒前
5秒前
情怀应助俭朴寒天采纳,获得10
6秒前
8秒前
8秒前
8秒前
ChaseY完成签到,获得积分10
9秒前
Gideon完成签到,获得积分10
9秒前
zmy发布了新的文献求助10
9秒前
orixero应助冰柠檬采纳,获得10
10秒前
勤奋的衬衫完成签到,获得积分10
10秒前
12秒前
13秒前
13秒前
银河灰烬发布了新的文献求助10
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
友好的妙松完成签到,获得积分10
15秒前
17秒前
grant完成签到,获得积分20
18秒前
韭黄发布了新的文献求助10
18秒前
小二郎应助Tloml-dw010530采纳,获得10
20秒前
儒雅路人完成签到,获得积分10
20秒前
20秒前
糊涂的康完成签到,获得积分10
20秒前
彭于晏应助Fighter采纳,获得10
21秒前
21秒前
grant发布了新的文献求助10
21秒前
23秒前
24秒前
蛇蛇王子完成签到 ,获得积分10
25秒前
冰柠檬发布了新的文献求助10
26秒前
27秒前
michael发布了新的文献求助10
28秒前
小蘑菇应助韭黄采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540243
求助须知:如何正确求助?哪些是违规求助? 4626777
关于积分的说明 14601084
捐赠科研通 4567821
什么是DOI,文献DOI怎么找? 2504231
邀请新用户注册赠送积分活动 1481901
关于科研通互助平台的介绍 1453541