TempME: Towards the Explainability of Temporal Graph Neural Networks via Motif Discovery

计算机科学 瓶颈 图形 人工智能 深层神经网络 机器学习 主题(音乐) 理论计算机科学 人工神经网络 声学 物理 嵌入式系统
作者
Jialin Chen,Rex Ying
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2310.19324
摘要

Temporal graphs are widely used to model dynamic systems with time-varying interactions. In real-world scenarios, the underlying mechanisms of generating future interactions in dynamic systems are typically governed by a set of recurring substructures within the graph, known as temporal motifs. Despite the success and prevalence of current temporal graph neural networks (TGNN), it remains uncertain which temporal motifs are recognized as the significant indications that trigger a certain prediction from the model, which is a critical challenge for advancing the explainability and trustworthiness of current TGNNs. To address this challenge, we propose a novel approach, called Temporal Motifs Explainer (TempME), which uncovers the most pivotal temporal motifs guiding the prediction of TGNNs. Derived from the information bottleneck principle, TempME extracts the most interaction-related motifs while minimizing the amount of contained information to preserve the sparsity and succinctness of the explanation. Events in the explanations generated by TempME are verified to be more spatiotemporally correlated than those of existing approaches, providing more understandable insights. Extensive experiments validate the superiority of TempME, with up to 8.21% increase in terms of explanation accuracy across six real-world datasets and up to 22.96% increase in boosting the prediction Average Precision of current TGNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗的立诚完成签到,获得积分10
1秒前
leishenwang完成签到,获得积分10
1秒前
樱香音子完成签到,获得积分10
2秒前
2秒前
cc123完成签到,获得积分10
3秒前
daisy发布了新的文献求助10
3秒前
jie完成签到,获得积分10
3秒前
yingme完成签到,获得积分10
3秒前
飞云完成签到,获得积分10
3秒前
传统的平安完成签到,获得积分10
4秒前
diudiu完成签到,获得积分10
4秒前
5秒前
lbx发布了新的文献求助10
5秒前
dy完成签到,获得积分10
5秒前
顶刊在逃一作完成签到,获得积分10
5秒前
LIU完成签到,获得积分10
5秒前
我要吃挂面完成签到,获得积分10
6秒前
传奇3应助加油采纳,获得10
7秒前
仰望星空的向日葵完成签到,获得积分10
7秒前
京城世界完成签到,获得积分10
8秒前
cm完成签到,获得积分10
8秒前
研友_VZG7GZ应助局内人采纳,获得10
8秒前
谦让的凝阳完成签到,获得积分10
8秒前
9秒前
米斯特刘完成签到,获得积分10
9秒前
wanghuifen123发布了新的文献求助10
9秒前
xs发布了新的文献求助10
10秒前
Nick应助洁净海莲采纳,获得30
10秒前
73Jennie123完成签到,获得积分10
10秒前
梅红完成签到,获得积分10
11秒前
天真的乌完成签到 ,获得积分10
11秒前
白玫瑰完成签到,获得积分10
12秒前
李健应助li采纳,获得10
12秒前
song完成签到 ,获得积分20
13秒前
灰太狼大王完成签到 ,获得积分10
13秒前
1234发布了新的文献求助10
13秒前
13秒前
园艺小学生完成签到,获得积分10
13秒前
那片叶子完成签到,获得积分10
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938028
求助须知:如何正确求助?哪些是违规求助? 3483527
关于积分的说明 11023945
捐赠科研通 3213433
什么是DOI,文献DOI怎么找? 1776230
邀请新用户注册赠送积分活动 862380
科研通“疑难数据库(出版商)”最低求助积分说明 798440