Fault diagnosis method for proton exchange membrane fuel cell system based on digital twin and unsupervised domain adaptive learning

冗余(工程) 计算机科学 断层(地质) 模式识别(心理学) 人工智能 算法 操作系统 地震学 地质学
作者
Zhendong Sun,Yujie Wang,Zonghai Chen
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:50: 1207-1219 被引量:26
标识
DOI:10.1016/j.ijhydene.2023.10.148
摘要

In recent years, supervised deep learning-based methods have achieved significant results in fuel cell system fault diagnosis. However, most existing deep learning-based fault prediction methods suffer from missing fault labels and data limitations due to the difficulty in obtaining fault and degradation data in real fuel cell systems. To address the above challenges, this paper proposes a fault diagnosis method based on digital twin and unsupervised domain adaptive learning. The method has two key features: First, a maximum-relevance minimum-redundancy algorithm is used to select the input signals. Then a high-order fuel cell system model is developed to obtain a large amount of digital domain fault data at low cost by simulating fault injection. Second, domain-invariant features are extracted using a domain-adaptive adversarial learning approach to reduce the distribution differences between the digital and real domains. The method successfully diagnosed nine typical faults in the fuel cell air, hydrogen, and thermal subsystems without real data fault labels. Under dynamic load conditions, the diagnostic accuracy reached 92.5 %. In addition, the method achieves a diagnostic accuracy of over 90 % under domain adversarial training using only normal real data. The experimental results show that the proposed method can achieve fuel cell system fault diagnosis without fault labels and significantly reduce the dependence on fault data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助鑫光熠熠采纳,获得10
刚刚
等待的mango完成签到,获得积分10
1秒前
溺爱王楚钦完成签到,获得积分10
1秒前
呼之欲出发布了新的文献求助10
1秒前
1秒前
虚幻的冬瓜完成签到 ,获得积分10
2秒前
3秒前
顺心的馒头完成签到,获得积分10
3秒前
12发布了新的文献求助10
3秒前
Jasper应助叮叮车采纳,获得10
3秒前
复杂幻然完成签到,获得积分10
4秒前
forever发布了新的文献求助80
4秒前
丶呆久自然萌完成签到,获得积分10
4秒前
风吹麦田完成签到,获得积分10
4秒前
善良的一凤完成签到,获得积分10
5秒前
日月山河永在完成签到,获得积分10
6秒前
领导范儿应助wjx采纳,获得30
6秒前
Caroline完成签到,获得积分20
6秒前
6秒前
精明的丹云完成签到,获得积分20
8秒前
Bluebulu完成签到,获得积分10
8秒前
浮游应助卡迪力亚采纳,获得10
9秒前
9秒前
10秒前
10秒前
干净完成签到,获得积分10
10秒前
淡定的沂发布了新的文献求助10
10秒前
11秒前
lemon完成签到,获得积分10
12秒前
12秒前
故意的驳发布了新的文献求助30
12秒前
Motorhead完成签到,获得积分10
12秒前
发嗲的鸡发布了新的文献求助10
13秒前
mei完成签到,获得积分10
13秒前
夏小蘩应助Musicman采纳,获得10
13秒前
14秒前
14秒前
14秒前
充电宝应助精明的丹云采纳,获得10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178396
求助须知:如何正确求助?哪些是违规求助? 4366671
关于积分的说明 13595765
捐赠科研通 4217004
什么是DOI,文献DOI怎么找? 2312780
邀请新用户注册赠送积分活动 1311643
关于科研通互助平台的介绍 1259958