Deep Learning for Automatic Prediction of Lymph Node Station Metastasis in Esophageal Cancer Patients from Contrast-Enhanced CT

医学 转移 放射科 淋巴结 食管癌 深度学习 淋巴 癌症 核医学 人工智能 病理 计算机科学 内科学
作者
Yudong Wang,Jun-Ming Zhu,Dong Guo,Kun Yan,Lu Li,Shijie Wang,Dayong Jin,Xiangyang Ye,Qiang Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (2): S55-S55
标识
DOI:10.1016/j.ijrobp.2023.06.347
摘要

The diagnosis of lymph node (LN) metastasis in computed tomography (CT) is an essential yet challenging task in esophageal cancer staging and treatment planning. Although criteria (e.g., RECIST, morphological/texture features) are proposed to predict LN metastasis, the diagnostic accuracy remains low with sensitivity <50% and specificity <75%, as reported in previous studies. Deep learning (DL) has the potential to address this issue by learning from large-scale labeled data. However, due to the practical surgery procedure in lymph node dissection, it is difficult to pair the metastasis of individual LN reported in the pathology report to the LN instance found in the CT image. Hence, in this study, we first use pathology reports to determine the LNS metastasis, then develop a multiple instance deep learning (MIDL) model to predict lymph node station (LNS) metastasis.We collected 1200 esophageal cancer patients with preoperative contrast-enhanced CT before surgery. A recently developed automatic mediastinal LNS segmentation model was first applied to segment LNS of 1 to 8 based on the IASLC protocol. For each LNS, the local CT region of interest (ROI) was cropped to generate a station-wise CT patch, where the LNS was labeled as metastatic if at least one metastatic LN was indicated in the pathology report. Using the station-wise CT patch and LNS label, we train a 3D MIDL model, MobileNetV3, to predict LNS metastasis. To better provide the LN position priors in MIDL, LN instances (with a short axis >4mm) were also segmented using an automatic LN detection algorithm and were added to the MIDL model as an auxiliary input. Five-fold cross-validation was conducted to evaluate the MIDL performance.The MIDL model's performance is summarized in Table 1. The MIDL model incorporating an additional LN instance mask demonstrated a superior overall AUC of 0.7539, surpassing the model without the LN mask input by 2.93%. The specificity was evaluated at a threshold resulting in a recall of 0.7, and the best model outperformed the CT input model in terms of specificity by 2.11%. This highlights the value of including the LN position prior to the MIDL model. Notably, when a threshold was set to result in a specificity of 75%, the best MIDL model demonstrated a significantly higher recall compared to the previously reported clinical diagnostic recall (39.7% vs. 63.21%).We developed a MIDL classification model to predict LNS metastasis using CT scans of 1200 patients. Our findings suggest that the MIDL model can substantially improve LNS metastasis prediction and has the potential to play an essential role in cancer staging, treatment planning, and prognostic analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
zhentg完成签到,获得积分0
3秒前
小椿发布了新的文献求助10
3秒前
xd完成签到,获得积分10
6秒前
7秒前
9秒前
阿猩a完成签到 ,获得积分10
10秒前
青树柠檬完成签到 ,获得积分10
11秒前
11秒前
彩色布条完成签到,获得积分10
11秒前
科研通AI5应助麦子采纳,获得10
12秒前
奕逸发布了新的文献求助10
13秒前
选民很头疼完成签到,获得积分10
14秒前
吱哦周发布了新的文献求助10
16秒前
超级日记本完成签到,获得积分10
16秒前
18秒前
Ava应助2211采纳,获得10
19秒前
隐形曼青应助Vincent采纳,获得10
22秒前
24秒前
26秒前
29秒前
29秒前
Ava应助小小小珂卿采纳,获得10
29秒前
否极泰来发布了新的文献求助10
30秒前
研友_5Zl9D8发布了新的文献求助10
30秒前
早早完成签到,获得积分10
31秒前
32秒前
好久不见发布了新的文献求助10
33秒前
Vincent完成签到,获得积分10
33秒前
34秒前
怡然平凡完成签到,获得积分20
35秒前
DuanYuanni完成签到,获得积分10
36秒前
36秒前
GillianRan完成签到,获得积分20
37秒前
yuanll完成签到,获得积分10
38秒前
38秒前
水下月完成签到 ,获得积分10
39秒前
Vincent发布了新的文献求助10
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742