Beyond singular prototype: A prototype splitting strategy for few-shot medical image segmentation

计算机视觉 计算机科学 人工智能 图像(数学) 分割 弹丸 图像分割 材料科学 冶金
作者
Pengrui Teng,Wenjian Liu,Xuesong Wang,Di Wu,Changan Yuan,Yuhu Cheng,De-Shuang Huang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:597: 127990-127990 被引量:1
标识
DOI:10.1016/j.neucom.2024.127990
摘要

In the realm of medical image semantic segmentation, few-shot learning, characterized by its efficient data utilization and flexible generalization capabilities, has been garnering increasing attention. The mainstream methods currently employ prototype-based approaches, which extract semantic knowledge from the annotated support images to guide the segmentation of the query image via masked global average pooling. However, such masked global average pooling leads to severe information loss, which is more problematic for medical images with large numbers of highly heterogeneous background categories. In this work, we propose a prototype splitting module (PSM) to effectively address the issue of semantic information loss in few-shot medical image segmentation. Specifically, PSM iteratively splits the support image masks into set of sub-masks containing segmented regions and unsegmented regions in a self-guided manner. This maximally retains the information within the original semantic classes and better extracts the representations of those classes. Additionally, we devise a multi-level cross attention module (MCAM) that transfers the foreground information from the support images to the query images across different levels to facilitate final segmentation prediction. We validate our method on multiple modal and multi-semantic medical image datasets. Results demonstrate that our approach achieves superior performance over existing state-of-the-art methods. The code has been released on https://github.com/fdngh/PSMnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小莹完成签到,获得积分10
1秒前
Callan发布了新的文献求助10
1秒前
健壮荠完成签到,获得积分10
4秒前
毓桦发布了新的文献求助30
5秒前
7秒前
7秒前
Vincent1990完成签到,获得积分10
9秒前
努力考博完成签到,获得积分10
9秒前
Yuanyuan完成签到,获得积分10
10秒前
医痞子发布了新的文献求助10
10秒前
开朗的傲丝完成签到 ,获得积分10
11秒前
altair发布了新的文献求助10
12秒前
Yuanyuan发布了新的文献求助10
13秒前
共享精神应助coldstork采纳,获得10
13秒前
15秒前
15秒前
传奇3应助逢考必过采纳,获得10
16秒前
乐研者完成签到,获得积分10
17秒前
科研通AI5应助光的本质采纳,获得20
18秒前
Evnnnn完成签到,获得积分10
18秒前
传奇3应助猪猪hero采纳,获得10
19秒前
酷波er应助毓桦采纳,获得10
19秒前
上好佳完成签到,获得积分10
20秒前
暗中观察发布了新的文献求助20
21秒前
芋你呀发布了新的文献求助10
21秒前
连安阳完成签到,获得积分10
21秒前
hyl发布了新的文献求助10
22秒前
一只科研人完成签到,获得积分20
22秒前
23秒前
李健应助hh采纳,获得10
25秒前
zzzz完成签到,获得积分10
26秒前
任性完成签到 ,获得积分10
27秒前
28秒前
28秒前
coldstork发布了新的文献求助10
28秒前
29秒前
lan完成签到,获得积分10
31秒前
领导范儿应助自在行采纳,获得10
32秒前
32秒前
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845070
求助须知:如何正确求助?哪些是违规求助? 3387273
关于积分的说明 10548547
捐赠科研通 3108008
什么是DOI,文献DOI怎么找? 1712331
邀请新用户注册赠送积分活动 824355
科研通“疑难数据库(出版商)”最低求助积分说明 774739