Deep learning in the precise assessment of primary Sjögren's Syndrome based on ultrasound images

医学 队列 前瞻性队列研究 超声波 灰度 核医学 放射科 内科学 人工智能 像素 计算机科学
作者
Xinyue Niu,Yujie Zhou,Jin Xu,Xue Qin,Xiaoyan Xu,Jia Li,Ling Wang,Tianyu Tang
出处
期刊:Rheumatology [Oxford University Press]
标识
DOI:10.1093/rheumatology/keae312
摘要

Abstract Objectives This study aimed to investigate the value of a deep learning (DL) model based on greyscale ultrasound (US) images for precise assessment and accurate diagnosis of primary Sjögren’s syndrome (pSS). Methods This was a multicentre prospective analysis. All pSS patients were diagnosed according to 2016 ACR/EULAR criteria. A total of 72 pSS patients and 72 sex- and age-matched healthy controls recruited between January 2022 and April 2023, together with 41 patients and 41 healthy controls recruited from June 2023 to February 2024 were used for DL model development and validation, respectively. The DL model was constructed based on the ResNet 50 input with preprocessed all participants’ bilateral submandibular glands (SMGs), parotid glands (PGs), and lacrimal glands (LGs) greyscale US images. Diagnostic performance of the model was compared with two radiologists. The accuracy of prediction and identification performance of DL model were evaluated by calibration curve. Results A total of 864 and 164 greyscale US images of SMGs, PGs, and LGs were collected for development and validation of the model. The area under the ROC (AUCs) of DL model in the SMGs, PGs, and LGs were 0.92, 0.93, 0.91 in the model cohort, and were 0.90, 0.88, 0.87 in the validation cohort, respectively, outperforming both radiologists. Calibration curves showed the prediction probability of the DL model was consistent with the actual probability in both model cohort and validation cohort. Conclusion The DL model based on greyscale US images showed diagnostic potential in the precise assessment of pSS patients in the SMGs, PGs and LGs, outperforming conventional radiologist evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊子文完成签到 ,获得积分10
刚刚
MX应助科研通管家采纳,获得20
刚刚
刚刚
烟花应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
Lin应助科研通管家采纳,获得20
1秒前
jassica9发布了新的文献求助10
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
爆米花应助义气的断秋采纳,获得10
2秒前
孟子豪发布了新的文献求助10
2秒前
可爱的函函应助研友_LXjjOZ采纳,获得10
2秒前
li发布了新的文献求助10
3秒前
wwwart发布了新的文献求助10
3秒前
EKKOO发布了新的文献求助10
4秒前
4秒前
5秒前
科研通AI5应助bali采纳,获得10
5秒前
bkagyin应助萨尔莫斯采纳,获得10
6秒前
Zp完成签到,获得积分10
6秒前
7秒前
7秒前
王永俊发布了新的文献求助10
7秒前
7秒前
今天的风儿甚是喧嚣完成签到,获得积分10
8秒前
大个应助cherry采纳,获得10
8秒前
洪山老狗发布了新的文献求助10
9秒前
零点零壹完成签到,获得积分10
9秒前
火星上的蜡烛完成签到,获得积分10
10秒前
我是老大应助11采纳,获得10
10秒前
大个应助暮鼓采纳,获得10
10秒前
Walter完成签到 ,获得积分10
11秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843549
求助须知:如何正确求助?哪些是违规求助? 3385850
关于积分的说明 10542709
捐赠科研通 3106659
什么是DOI,文献DOI怎么找? 1711004
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774380