DPAFNet: A Residual Dual-Path Attention-Fusion Convolutional Neural Network for Multimodal Brain Tumor Segmentation

计算机科学 掷骰子 分割 人工智能 模式识别(心理学) 残余物 卷积神经网络 背景(考古学) 卷积(计算机科学) 特征(语言学) 计算机视觉 人工神经网络 算法 生物 语言学 哲学 古生物学 数学 几何学
作者
Yankang Chang,Zhouzhou Zheng,Yingwei Sun,Mengmeng Zhao,Yao Lu,Yan Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104037-104037 被引量:50
标识
DOI:10.1016/j.bspc.2022.104037
摘要

Brain tumors are highly hazardous, and precise automated segmentation of brain tumor subregions has great importance and research significance on the diagnosis and treatment of diseases. Rapid advances in deep learning make accurate and efficient automatic segmentation more possible, but there are challenges. In this paper, an efficient 3D segmentation model (DPAFNet) based on dual-path (DP) module and multi-scale attention fusion (MAF) module is proposed. In DPAFNet, the dual path convolution is applied to broaden the network scale and residual connection is introduced to avoid network degradation. An attention fusion module is proposed to aggregate channel level global and local information, in which feature maps of different scales are fused to obtain features that are enriched in semantic information. This makes the object information of small tumors get full attention. Furthermore, the 3D iterative dilated convolution merging (IDCM) module expands the receptive field and improves the ability of context awareness. Ablation experiments verify the optimal combination of dilation rate for the dilated convolution merging module and demonstrate the enhancement of segmentation accuracy due to the post-processing method. Comparative experiments of this study on BraTS2018, BraTS2019 and BraTS2020 are promising and provide a promising precision and Dice score compared to related work. The proposed DPAFNet achieves Dice score of 79.5%, 90.0% and 83.9% in the enhancing tumor, whole tumor and tumor core on BraTS2018, respectively. On BraTS2019, it achieves Dice score of 78.2%, 89.0% and 81.2% in the enhancing tumor, whole tumor and tumor core, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏猛完成签到,获得积分10
刚刚
麋鹿完成签到,获得积分10
1秒前
1秒前
SciGPT应助Doran_luffy采纳,获得30
1秒前
2秒前
超级黑米完成签到,获得积分10
3秒前
3秒前
1351567822应助科研通管家采纳,获得30
5秒前
coolkid应助科研通管家采纳,获得10
5秒前
yar应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
鸣笛应助科研通管家采纳,获得50
5秒前
Sid应助科研通管家采纳,获得40
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
yar应助科研通管家采纳,获得10
5秒前
coolkid应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
6秒前
大模型应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
麋鹿发布了新的文献求助10
6秒前
6秒前
6秒前
MR_MA应助科研通管家采纳,获得10
6秒前
6秒前
studystudy发布了新的文献求助10
7秒前
小马甲应助听说采纳,获得10
8秒前
风清扬应助星河采纳,获得10
8秒前
嗦嗦完成签到,获得积分10
9秒前
鲤鱼凛发布了新的文献求助20
9秒前
10秒前
yaoyao110完成签到,获得积分10
12秒前
听雪冬眠完成签到,获得积分10
13秒前
15秒前
1.1发布了新的文献求助10
17秒前
17秒前
18秒前
鹏程万里完成签到,获得积分10
18秒前
小胖砸完成签到 ,获得积分10
19秒前
yahong发布了新的文献求助10
22秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899796
求助须知:如何正确求助?哪些是违规求助? 3444386
关于积分的说明 10834939
捐赠科研通 3169429
什么是DOI,文献DOI怎么找? 1751105
邀请新用户注册赠送积分活动 846489
科研通“疑难数据库(出版商)”最低求助积分说明 789226