Apple inflorescence recognition of phenology stage in complex background based on improved YOLOv7

最小边界框 花序 人工智能 稳健性(进化) 计算机科学 果园 模式识别(心理学) 残余物 算法 园艺 图像(数学) 生物 生物化学 基因
作者
Jincheng Chen,Benxue Ma,Chao Ji,Jing Zhang,Qingchun Feng,Xin Liu,Yujie Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 108048-108048 被引量:24
标识
DOI:10.1016/j.compag.2023.108048
摘要

Accurate discrimination of apple inflorescence morphology and phenology spatial information distribution of orchard are beneficial to guide chemical spraying of target variables and individual thinning operations of machines. In this study, we propose a recognition method based on an improved YOLOv7 model for detecting apple inflorescence at the bud, initial flowering, and full-bloom flowering stages. To reduce parameters, the Efficient Layer Aggregation Network (ELAN) in YOLOv7 was replaced by a residual network structure containing three convolutional layers. A Squeeze and Excitation Network (SENet) and a Coordinate Attention (CA) were embedded in the last layer of the backbone network and the head network, respectively, to improve the recognition accuracy and sensitivity of apple inflorescence. To more accurately compute the distance between the prediction box and the ground truth box. SIoU bounding box regression loss function was used to refine the regression inference bias and improve the bounding box prediction accuracy. In the detection head network, an 80 × 80 detection head was added to improve the recognition ability of small-scale apple inflorescence. Finally, a phenology apple inflorescence dataset was established for the experiment. The ablation experiment results showed that a proper trick could bring an additional performance improvement to the model. The proposed model outperformed three models proposed in the previous study (YOLOv5s, improved YOLOv5, and YOLOv7). It obtained the best performance with a mAP of 80.1% and a recognition speed of 42.58 frames per second (fps). The practicability and robustness of the recognition method were verified by developing the phenology apple inflorescence detection and recognition system. This finding can provide a theoretical basis and strategy for developing real-time recognition equipment for apple inflorescence during phenology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SK发布了新的文献求助10
刚刚
刚刚
Hello应助妮妮采纳,获得10
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
高高冰蝶应助小荔枝采纳,获得10
3秒前
万能图书馆应助阿树采纳,获得10
4秒前
核桃发布了新的文献求助10
5秒前
dccfv关注了科研通微信公众号
5秒前
molo发布了新的文献求助10
5秒前
孟寐以求发布了新的文献求助10
5秒前
6秒前
EVE发布了新的文献求助10
7秒前
SYLH应助小强123采纳,获得10
7秒前
敢敢完成签到,获得积分10
7秒前
追寻半仙完成签到 ,获得积分10
7秒前
科研通AI2S应助不当脆脆鲨采纳,获得10
8秒前
wenwenwang完成签到 ,获得积分10
8秒前
8秒前
kuoyu88发布了新的文献求助10
9秒前
9秒前
wxy完成签到,获得积分10
11秒前
勤奋的姒完成签到 ,获得积分10
12秒前
13秒前
13秒前
mao发布了新的文献求助20
15秒前
于芋菊发布了新的文献求助10
16秒前
16秒前
freefys发布了新的文献求助10
18秒前
小二郎应助molo采纳,获得10
18秒前
科研通AI5应助孟寐以求采纳,获得10
18秒前
晞沫耶完成签到 ,获得积分10
19秒前
丁鹏笑完成签到 ,获得积分0
20秒前
在水一方应助zhh采纳,获得10
20秒前
20秒前
小小朝完成签到,获得积分10
21秒前
科研通AI2S应助xiuxiu采纳,获得10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784418
求助须知:如何正确求助?哪些是违规求助? 3329484
关于积分的说明 10242453
捐赠科研通 3044982
什么是DOI,文献DOI怎么找? 1671481
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759372