Development and validation of machine learning algorithms to predict posthypertensive origin in left ventricular hypertrophy

医学 左心室肥大 置信区间 算法 机器学习 随机森林 决策树 接收机工作特性 内科学 人口 心脏病学 支持向量机 人工智能 血压 计算机科学 环境卫生
作者
Maxime Beneyto,Ghada Ghyaza,Eve Cariou,Jacques Amar,Olivier Lairez
出处
期刊:Archives of Cardiovascular Diseases [Elsevier]
卷期号:116 (8-9): 397-402 被引量:2
标识
DOI:10.1016/j.acvd.2023.06.005
摘要

Left ventricular hypertrophy is often associated with hypertension, which is not necessarily the cause of hypertrophy. Non-hypertension-related aetiologies often have a strong impact on patient management, and therefore require a thorough and careful workup. When considering all left ventricular hypertrophies, even the mild ones, the number of patients who need a workup increases drastically. This raises the need for a tool to evaluate the pretest probability of the origin of left ventricular hypertrophy.To predict the hypertensive origin of left ventricular hypertrophy using machine learning on first-line clinical, laboratory and echocardiographic variables.We used a retrospective single-centre population of 591 patients with left ventricular hypertrophy, starting at 12mm maximal left ventricular wall thickness. After splitting data in a training and testing set, we trained three different algorithms: decision tree; random forest; and support vector machine. Model performances were validated on the testing set.All models exhibited good areas under receiver operating characteristic curves: 0.82 (95% confidence interval: 0.77-0.88) for the decision tree; 0.90 (95% confidence interval 0.85-0.94) for the random forest; and 0.90 (95% confidence interval: 0.85-0.94) for the support vector machine. After threshold selection, the last model had the best balance between its specificity of 0.96 (95% confidence interval: 0.91-0.99) and its sensitivity of 0.31 (95% confidence interval: 0.17-0.44). All algorithms relied on similar most influential predictor variables. Online calculators were developed and made publicly available.Machine learning models were able to determine the hypertensive origin of left ventricular hypertrophy with good performances. Implementation in clinical practice could reduce the number of aetiological workups needed in patients presenting with left ventricular hypertrophy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
canvas完成签到,获得积分10
刚刚
Jenny完成签到 ,获得积分10
1秒前
bioglia发布了新的文献求助10
1秒前
健康的白开水完成签到,获得积分10
1秒前
Ava应助彩色的翠曼采纳,获得10
2秒前
ernest发布了新的文献求助10
2秒前
月亮完成签到,获得积分10
2秒前
2秒前
糖炒栗子完成签到,获得积分10
2秒前
Orange应助net80yhm采纳,获得10
3秒前
3秒前
华仔应助若尘采纳,获得10
5秒前
张晓东完成签到,获得积分10
5秒前
滴滴滴滴完成签到,获得积分10
5秒前
5秒前
BADGUY发布了新的文献求助10
5秒前
5秒前
善学以致用应助猪猪hero采纳,获得10
6秒前
汪萌完成签到,获得积分20
7秒前
麻薯头头发布了新的文献求助10
7秒前
NexusExplorer应助Chris采纳,获得10
7秒前
7秒前
8秒前
田様应助狮朱采纳,获得10
8秒前
今后应助Johan采纳,获得10
8秒前
饿了就次爪爪完成签到 ,获得积分10
8秒前
敲一敲完成签到,获得积分10
8秒前
幽默白竹完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
山水之乐发布了新的文献求助80
9秒前
可恶啊完成签到,获得积分10
9秒前
勤恳化蛹发布了新的文献求助10
10秒前
日初完成签到,获得积分20
10秒前
10秒前
郑郑完成签到,获得积分10
11秒前
米绮妙发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5332591
求助须知:如何正确求助?哪些是违规求助? 4471202
关于积分的说明 13916250
捐赠科研通 4364758
什么是DOI,文献DOI怎么找? 2397988
邀请新用户注册赠送积分活动 1391224
关于科研通互助平台的介绍 1361923