Development of a TGC-based growth model for the olive flounder, Paralichthys olivaceus, and its application in developing a fish growth simulator architecture

牙鲆 扁口鱼 生物 增长模型 渔业 挣扎 数学 数理经济学
作者
Jun-Hyuk Seo,Jeonghwan Park
出处
期刊:Aquaculture [Elsevier]
卷期号:594: 741383-741383 被引量:1
标识
DOI:10.1016/j.aquaculture.2024.741383
摘要

Temperature is one of the main factors affecting fish growth. Many studies have proposed a fish growth model considering the effect of temperature. Among these models, the TGC (thermal growth coefficient) model which digitized the influence of temperature on fish growth is the most notable. The original TGC model was made in the form of applying 1/3 as an exponent, but subsequent studies have shown that it is necessary to apply different exponent value or other constant depending on the dynamics of growth. In this study, the original TGC model using 1/3 as an exponent and the new model using 2/3 as an exponent were compared for olive flounder (Paralichthys olivaceus). The seasonal temperature function under the conditions of the flow-through system was applied and the transition point of change in the growth dynamics was obtained by comparing the instantaneous growth rate of the two TGC models. Around 541 g of the transition point was obtained, and a combined TGC model was presented that integrated the two models. However, the growth prediction model based on these statistical techniques does not reflect real-time changes in each parameter and requires academic knowledge, making it difficult to use in the actual field. Recently, as the smart aquaculture industry incorporating ICT (information and communication technologies) has grown rapidly, many solutions such as fish growth prediction simulators using statistical growth models have been developed. Therefore, in this study, input and output variables were classified and software architectures were presented so that the statistical form of fish growth model using TGC derived above could be applied when developing a fish growth prediction simulator. Deriving these growth models and interpreting them into languages in the field of ICT will enhance the field applicability of academic research results as a part of smart aquaculture technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Michael发布了新的文献求助10
1秒前
1秒前
曾经如是发布了新的文献求助10
1秒前
郭一彤完成签到,获得积分10
1秒前
JamesPei应助自由访烟采纳,获得10
1秒前
清爽老九发布了新的文献求助10
1秒前
悟川发布了新的文献求助30
2秒前
传奇3应助李健采纳,获得10
2秒前
爆米花应助调皮摇伽采纳,获得10
3秒前
olekravchenko发布了新的文献求助10
3秒前
小二郎应助简单的梦槐采纳,获得10
3秒前
4秒前
summerer给summerer的求助进行了留言
5秒前
zzy完成签到,获得积分10
5秒前
汉堡包应助朴实的汲采纳,获得10
6秒前
希望天下0贩的0应助宜菏采纳,获得10
6秒前
加油完成签到 ,获得积分10
6秒前
星辰大海应助严三笑采纳,获得30
7秒前
7秒前
7秒前
完美世界应助王sir采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
小白熊应助miemie采纳,获得10
9秒前
sunshineyl发布了新的文献求助10
10秒前
华仔应助哒布6采纳,获得10
10秒前
bbible完成签到 ,获得积分10
11秒前
13秒前
ke完成签到,获得积分10
13秒前
ningqing发布了新的文献求助10
14秒前
悟川发布了新的文献求助10
15秒前
15秒前
16秒前
李健的小迷弟应助浅浅采纳,获得30
17秒前
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
Echo发布了新的文献求助20
19秒前
胖大海发布了新的文献求助10
19秒前
yushanriqing发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786223
求助须知:如何正确求助?哪些是违规求助? 5692914
关于积分的说明 15469293
捐赠科研通 4915166
什么是DOI,文献DOI怎么找? 2645571
邀请新用户注册赠送积分活动 1593321
关于科研通互助平台的介绍 1547639