已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TB-CXRNet: Tuberculosis and Drug-Resistant Tuberculosis Detection Technique Using Chest X-ray Images

肺结核 医学 抗药性 药品 耐药结核 人工智能 疾病 人类免疫缺陷病毒(HIV) 机器学习 结核分枝杆菌 内科学 计算机科学 病理 病毒学 药理学 微生物学 生物
作者
Tawsifur Rahman,Amith Khandakar,Ashiqur Rahman,Susu M. Zughaier,Muna Al Maslamani,Moajjem Hossain Chowdhury,Anas Tahir,Md. Sakib Abrar Hossain,Muhammad E. H. Chowdhury
出处
期刊:Cognitive Computation [Springer Science+Business Media]
卷期号:16 (3): 1393-1412 被引量:6
标识
DOI:10.1007/s12559-024-10259-3
摘要

Abstract Tuberculosis (TB) is a chronic infectious lung disease, which caused the death of about 1.5 million people in 2020 alone. Therefore, it is important to detect TB accurately at an early stage to prevent the infection and associated deaths. Chest X-ray (CXR) is the most popularly used method for TB diagnosis. However, it is difficult to identify TB from CXR images in the early stage, which leads to time-consuming and expensive treatments. Moreover, due to the increase of drug-resistant tuberculosis, the disease becomes more challenging in recent years. In this work, a novel deep learning-based framework is proposed to reliably and automatically distinguish TB, non-TB (other lung infections), and healthy patients using a dataset of 40,000 CXR images. Moreover, a stacking machine learning-based diagnosis of drug-resistant TB using 3037 CXR images of TB patients is implemented. The largest drug-resistant TB dataset will be released to develop a machine learning model for drug-resistant TB detection and stratification. Besides, Score-CAM-based visualization technique was used to make the model interpretable to see where the best performing model learns from in classifying the image. The proposed approach shows an accuracy of 93.32% for the classification of TB, non-TB, and healthy patients on the largest dataset while around 87.48% and 79.59% accuracy for binary classification (drug-resistant vs drug-sensitive TB), and three-class classification (multi-drug resistant (MDR), extreme drug-resistant (XDR), and sensitive TB), respectively, which is the best reported result compared to the literature. The proposed solution can make fast and reliable detection of TB and drug-resistant TB from chest X-rays, which can help in reducing disease complications and spread.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿应助李大壮采纳,获得10
2秒前
小彬完成签到 ,获得积分10
2秒前
晚风完成签到 ,获得积分10
4秒前
mmyhn完成签到,获得积分10
7秒前
派大赐完成签到 ,获得积分10
7秒前
压力是多的完成签到,获得积分10
9秒前
FashionBoy应助田所浩二采纳,获得10
9秒前
Cecilia完成签到,获得积分10
10秒前
无花果应助tongluobing采纳,获得10
12秒前
17秒前
田所浩二完成签到,获得积分10
19秒前
芽芽豆完成签到 ,获得积分10
21秒前
田所浩二发布了新的文献求助10
21秒前
22秒前
Persist完成签到 ,获得积分10
22秒前
fukase完成签到,获得积分10
22秒前
26秒前
与山发布了新的文献求助10
31秒前
今后应助bystanding采纳,获得10
32秒前
lb001完成签到 ,获得积分10
37秒前
Percy完成签到 ,获得积分10
41秒前
Philip发布了新的文献求助10
50秒前
黯然完成签到 ,获得积分10
50秒前
zqaixj发布了新的文献求助10
1分钟前
Freedom_1996完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
anthea完成签到 ,获得积分10
1分钟前
yln发布了新的文献求助10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
骆欣怡完成签到 ,获得积分10
1分钟前
yar应助科研通管家采纳,获得10
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
yar应助科研通管家采纳,获得10
1分钟前
yar应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
Mei应助科研通管家采纳,获得10
1分钟前
yar应助科研通管家采纳,获得10
1分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047683
求助须知:如何正确求助?哪些是违规求助? 3585514
关于积分的说明 11395087
捐赠科研通 3312610
什么是DOI,文献DOI怎么找? 1822647
邀请新用户注册赠送积分活动 894576
科研通“疑难数据库(出版商)”最低求助积分说明 816406