How Do Consumers Interact with Digital Expert Advice? Experimental Evidence from Health Insurance

产品(数学) 采购 营销 背景(考古学) 建议(编程) 业务 价值(数学) 消费者选择 广告 计算机科学 几何学 数学 生物 机器学习 古生物学 程序设计语言
作者
M. Kate Bundorf,Maria Polyakova,Ming Tai-Seale
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (11): 7617-7643 被引量:4
标识
DOI:10.1287/mnsc.2020.02453
摘要

Consumers increasingly use digital advice when making purchasing decisions. How do such tools change consumer behavior and what types of consumers are likely to use them? We examine these questions with a randomized controlled trial of digital expert advice in the context of prescription drug insurance. The intervention we study was effective at changing consumer choices. We propose that, conceptually, expert advice can affect consumer choices through two distinct channels: by updating consumer beliefs about product features (learning) and by influencing how much consumers value product features (interpretation). Using our trial data to estimate a model of consumer demand, we find that both channels are quantitatively important. Digital expert advice tools not only provide consumers with information, but also alter how consumers value product features. For example, consumers are willing to pay 14% less for a plan with the most popular brand and 37% less for an extra star rating when they incorporate digital expert advice on plan choice relative to only having information about product features. Further, we document substantial selection into the use of digital advice on two margins. Consumers who are inherently less active shoppers and those who we predict would have responded to advice more were less likely to demand it. Our results raise concerns regarding the ability of digital advice to alter consumer preferences as well as the distributional implications of greater access to digital expert advice. This paper was accepted by Stefan Scholtes, healthcare management. Funding: This work was supported by the National Institute on Aging [Grant K01AG059843] and the Patient-Centered Outcomes Research Institute [Grant CDR-1306-03598]. The project also received financial support from Stanford Innovation Funds. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2020.02453 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助无心的秋天采纳,获得10
刚刚
刚刚
小二郎应助cyj采纳,获得10
1秒前
1秒前
与山发布了新的文献求助10
1秒前
L77完成签到,获得积分0
1秒前
烟沿衍言完成签到,获得积分10
2秒前
3秒前
端碗完成签到,获得积分10
3秒前
脑洞疼应助xing采纳,获得10
4秒前
科研通AI5应助大块采纳,获得10
4秒前
球闪发布了新的文献求助10
5秒前
犹豫绵阳发布了新的文献求助10
5秒前
Yunis完成签到 ,获得积分10
6秒前
烟沿衍言发布了新的文献求助10
6秒前
JamesPei应助高挑的小蕊采纳,获得10
7秒前
吃次吃次发布了新的文献求助10
8秒前
112我的发布了新的文献求助10
8秒前
8秒前
10秒前
10秒前
Yoke关注了科研通微信公众号
11秒前
NexusExplorer应助麦冬采纳,获得30
12秒前
12秒前
豪豪完成签到,获得积分10
12秒前
LAIJINSHENG完成签到 ,获得积分10
12秒前
研友_VZG7GZ应助帅气老虎采纳,获得10
12秒前
mizhou发布了新的文献求助10
13秒前
梁三岁完成签到,获得积分10
13秒前
忘崽子小拳头完成签到,获得积分10
14秒前
领导范儿应助邱邱采纳,获得10
14秒前
14秒前
14秒前
古月发布了新的文献求助10
15秒前
15秒前
15秒前
李爱国应助tzh采纳,获得10
16秒前
16秒前
Gromit发布了新的文献求助10
17秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787625
求助须知:如何正确求助?哪些是违规求助? 3333227
关于积分的说明 10260438
捐赠科研通 3048867
什么是DOI,文献DOI怎么找? 1673295
邀请新用户注册赠送积分活动 801756
科研通“疑难数据库(出版商)”最低求助积分说明 760338