Prediction of biomarkers associated with membranous nephropathy: Bioinformatic analysis and experimental validation

接收机工作特性 基因 微阵列分析技术 免疫系统 生物 计算生物学 发病机制 Lasso(编程语言) 基因表达谱 基因表达 免疫学 遗传学 医学 计算机科学 内科学 万维网
作者
Miaoru Han,Yi Wang,Xiaoyan Huang,Ping Li,Wenjun Shan,Haowen Gu,Houchun Wang,Qinghua Zhang,Kun Bao
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:126: 111266-111266 被引量:14
标识
DOI:10.1016/j.intimp.2023.111266
摘要

Membranous nephropathy (MN), the most prevalent form of nephrotic syndrome in non-diabetic adults globally, is currently the second most prevalent and fastest-increasing primary glomerular disease in China. Numerous renal disorders are developed partly due to ferroptosis. However, its relationship to the pathogenesis of MN has rarely been investigated in previous studies; actually, ferroptosis is closely linked to the immune microenvironment and inflammatory response, which might affect the entire process of MN development. In this study, we aimed to identify ferroptosis-related genes that are potentially related to immune cell infiltration, which can further contribute to MN pathogenesis. The microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Ferroptosis-related differentially expressed genes (FDEGs) were identified, which were further used for functional enrichment analysis. The common genes identified using the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression algorithm and the support vector machine recursive feature elimination (SVM-RFE) algorithm were used to identify the characteristic genes related to ferroptosis. The feasibility of the 7 genes as a distinguishing factor was assessed using the receiver operating characteristic (ROC) curve, with the area under the curve (AUC) score serving as the evaluation metric. Gene set enrichment analysis (GSEA) and correlation analysis of these genes were further performed. The correlation between the expression of these genes and immune cell infiltration inferred by single sample gene set enrichment analysis (ssGSEA) algorithm was explored. As a result, 7 genes, including NR1D1, YTHDC2, EGR1, ZFP36, RRM2, RELA and PDK4, which were most relevant to immune cell infiltration, were identified to be potential diagnostic genes in MN patients. Next, the signature genes were validated with other GEO datasets. In the subsequent steps, we conducted quantitative real-time fluorescence PCR (qRT-PCR) analysis and immunohistochemistry (IHC) method on the cationic bovine serum albumin (C-BSA) induced membranous nephropathy (MN) rat model and the passive Heymann nephritis (pHN) rat model to examine characteristic genes. Finally, we analysed the mRNA expression patterns of hub genes in MN patients and normal controls using the Nephroseq V5 online platform. In concise terms, our study successfully identified biomarkers specific to MN patients and delved into the potential interplay between these markers and immune cell infiltration. This knowledge bears significance for the diagnosis and prospective treatment strategies for individuals affected by MN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qinghe完成签到 ,获得积分10
3秒前
朱洪帆发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
Ha完成签到,获得积分10
8秒前
幸福妙柏完成签到 ,获得积分10
8秒前
xiuxiu125完成签到,获得积分10
9秒前
侠医2012完成签到,获得积分0
9秒前
Jzhaoc580完成签到 ,获得积分10
9秒前
会写日记的乌龟先生完成签到,获得积分10
11秒前
13秒前
神勇寒天完成签到 ,获得积分10
16秒前
zhang完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
lemon完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
123456完成签到 ,获得积分10
19秒前
五月完成签到 ,获得积分10
20秒前
luckweb完成签到,获得积分10
21秒前
左鞅完成签到 ,获得积分10
21秒前
luckweb发布了新的文献求助10
23秒前
飛03完成签到 ,获得积分10
25秒前
hy1234完成签到 ,获得积分10
31秒前
饱满烙完成签到 ,获得积分10
34秒前
疯狂的凡梦完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
38秒前
marc107完成签到,获得积分10
42秒前
风清扬应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
量子星尘发布了新的文献求助10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
CodeCraft应助科研通管家采纳,获得10
43秒前
滕祥应助科研通管家采纳,获得10
43秒前
共享精神应助科研通管家采纳,获得10
43秒前
43秒前
tulips完成签到 ,获得积分10
44秒前
BINBIN完成签到 ,获得积分0
46秒前
federish完成签到 ,获得积分10
47秒前
哗哗华完成签到 ,获得积分10
47秒前
量子星尘发布了新的文献求助10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706836
求助须知:如何正确求助?哪些是违规求助? 5179219
关于积分的说明 15247555
捐赠科研通 4860347
什么是DOI,文献DOI怎么找? 2608522
邀请新用户注册赠送积分活动 1559382
关于科研通互助平台的介绍 1517226