Recent advances in the electrochemical production of hydrogen peroxide

过氧化氢 环境友好型 电化学 析氧 工艺工程 环境科学 化学 生化工程 纳米技术 材料科学 有机化学 电极 工程类 生态学 生物 物理化学
作者
Nishu Dhanda,Yogesh Kumar Panday,Sudesh Kumar
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:: 143872-143872 被引量:21
标识
DOI:10.1016/j.electacta.2024.143872
摘要

Hydrogen peroxide (H2O2) is an innovative and environmentally friendly oxidant that finds wide-ranging applications across multiple industries. In the past, H2O2 production predominantly relied on the anthraquinone method, which had drawbacks such as the generation of organic waste and the requirement for energy-intensive reactions. A cheap, efficient, and sustainable way of producing H2O2 may be achieved through the redox reaction between oxygen and water. On both small and large scales, the electrosynthesis of H2O2 is practical and affordable. In recent years, it has been thought that the energy-intensive anthraquinone process may be replaced by the electrochemical synthesis of H2O2 via the two-electron oxygen reduction reaction (ORR) route. To eliminate the organic pollutants found in drinking water and industrial effluent, highly effective hydrogen peroxide (H2O2) must be produced electrochemically using gas diffusion electrodes (GDEs). Compared to other carbonaceous cathodes, the GDEs as cathodic electrocatalysts demonstrate greater cost-effectiveness, lower energy consumption, and higher oxygen utilization efficiency for the formation of H2O2. A promising alternative for enabling the growth of sustainable economics in the W&W sector is microbial electrochemical systems (MESs) that create H2O2. To enhance the efficiency and predictability of H2O2 production in MESs, a machine-learning approach was adopted, incorporating a meta-learning methodology to forecast the generation rate of H2O2 in MES based on the seven input variables, comprising several design and operational parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛夷完成签到,获得积分10
1秒前
谨慎寄松发布了新的文献求助10
1秒前
1秒前
Hedy应助hyd采纳,获得10
2秒前
caibai完成签到,获得积分10
2秒前
3秒前
无极2023完成签到 ,获得积分0
3秒前
3秒前
lili发布了新的文献求助10
3秒前
Chen_HaHa应助小丘2024采纳,获得10
4秒前
春桑早点睡完成签到,获得积分10
4秒前
5秒前
zh完成签到,获得积分10
5秒前
5秒前
小周的读研日常完成签到,获得积分10
5秒前
5秒前
5秒前
大反应釜完成签到,获得积分10
5秒前
领导范儿应助哈哈悦采纳,获得10
6秒前
夏渃浠完成签到,获得积分10
6秒前
wang666给wang666的求助进行了留言
7秒前
ddstty发布了新的文献求助10
8秒前
8秒前
wxq完成签到,获得积分10
9秒前
9秒前
hhhhh完成签到 ,获得积分10
10秒前
10秒前
10秒前
浅夏完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
妮儿发布了新的文献求助10
11秒前
day1完成签到,获得积分10
12秒前
12秒前
进击的然完成签到,获得积分10
12秒前
打打应助正直的彩虹采纳,获得10
14秒前
wuhu发布了新的文献求助10
14秒前
小二郎应助高高亦竹采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472388
求助须知:如何正确求助?哪些是违规求助? 4574698
关于积分的说明 14347960
捐赠科研通 4502083
什么是DOI,文献DOI怎么找? 2466883
邀请新用户注册赠送积分活动 1454893
关于科研通互助平台的介绍 1429206